
	
	

	
	

Gildan	Media	
	

Companion	PDF	
	

	

AGILE	PROJECT	MANAGEMENT	
FOR	DUMMIES	

	

by	
	

Mark	C.	Layton	
	
	

12 Part I: Understanding Agile

Today traditional projects that do succeed often suffer from one problem:
scope bloat, the introduction of unnecessary product features in a project.

Think about the software products you use every day. For example, the word-
processing program I’m typing on right now has a lot of features and tools.
Even though I write on this program every day, I use only some of the fea-
tures all the time. There are some elements that I use less frequently. There
are quite a few tools that I have never used, and come to think of it, I don’t
know anyone else who has used them, either. These features that few people
or no one uses are the result of scope bloat.

Scope bloat appears in all kinds of software, from complex enterprise appli-
cations, to websites that everyone uses. The chart in Figure 1-1 shows data
from another Standish Group study that illustrates just how common scope
bloat is. In the figure, you can see the proportion of requested features that
are actually used when the software goes into production. Sixty-four percent
of the features are rarely or never used.

Figure 1-1:
Actual use

of software
features.

45% Never16% Sometimes

19% Rarely

13% Often
7%

Always

 Copyright© 2011 by Standish Group.

The numbers in Figure 1-1 illustrate an enormous waste of time and money.
That waste is a direct result of traditional project management processes
that are unable to accommodate change. Project managers and stakeholders
know that change is not welcome mid-project, and that their best chance of
getting a potentially desirable feature is at the project start, so they ask for

 ✓ Everything they need
 ✓ Everything they think they may need
 ✓ Everything they want
 ✓ Everything they think they may want

05_9781118026243-ch01.indd 1205_9781118026243-ch01.indd 12 3/30/12 3:35 PM3/30/12 3:35 PM

14 Part I: Understanding Agile

Figure 1-2:
Agile

project
management

timeline.

A
gi

le
 H

is
to

ry

19
30

s-
 W

al
te

r S
he

w
ha

rt
co

nc
ep

tu
al

ize
s

sh
or

t
cy

cl
e

pr
oj

ec
ts

 a
s

a
w

ay
 to

 im
pr

ov
e

qu
al

ity
. H

is
m

et
ho

d
is

 k
no

w
n

as
 P

DS
A

(P
la

n-
Do

-S
tu

dy
-A

ct
).

19
30

19
50

s/
Ea

rl
y

19
60

s-
 T

he
 m

ili
ta

ry
 s

uc
ce

ss
fu

lly
us

es
 II

D
fo

r t
he

 d
ev

el
op

m
en

t o
f t

he
 X

-1
5

hy
pe

rs
on

ic
 je

t.
Fo

r P
ro

je
ct

 M
er

cu
ry

, N
AS

A
us

es
 II

D
fo

r i
ts

 s
of

tw
ar

e
de

ve
lo

pm
en

t,
in

cl
ud

in
g

us
e

of
 ti

m
eb

ox
in

g,
 fi

rs
t t

es
t,

an
d

to
p-

do
w

n/
st

ub
 d

ev
el

op
m

en
t.

19
40

s-
 L

ac
ki

ng
 th

e
lu

xu
ry

 o
f b

ei
ng

in
ef

fic
ie

nt
, t

he
 U

.S
. g

ov
er

nm
en

t g
at

he
rs

 it
s

to
p

sc
ie

nt
is

ts
 a

t L
os

 A
la

m
os

 N
at

io
na

l
La

bo
ra

to
ry

 to
 w

or
k

fa
ce

-to
-fa

ce
 o

n
ra

pi
dl

y
de

ve
lo

pi
ng

 th
e

th
eo

re
tic

al
 a

to
m

bi
c

bo
m

b.

19
60

s-
 In

 a
n

in
te

rn
al

 re
po

rt,
 IB

M
re

co
gn

ize
s

th
e

va
lu

e
an

d
su

pe
rio

rit
y

of
ite

ra
tiv

e
re

fin
em

en
t;

al
th

ou
gh

 IB
M

 is
 s

o
la

rg
e,

 th
is

 re
po

rt
is

 e
ss

en
tia

lly
 fi

le
d.

Ea
rl

y
19

70
s-

 IB
M

’s
Fe

de
ra

l S
ys

te
m

s
Di

vi
si

on
 a

nd
 T

RW
 c

om
pl

et
e

$1
00

m
 +

pr
oj

ec
ts

 u
si

ng
 it

er
at

iv
e

m
et

ho
ds

, i
nc

lu
di

ng
th

e
co

m
m

an
d

an
d

co
nt

ro
l s

of
tw

ar
e

fo
r t

he
Ba

lli
st

ic
 M

is
si

le
 D

ef
en

se
 p

ro
gr

am

19
70

- D
r.

Ro
yc

e
pu

bl
is

he
s

“M
an

ag
in

g
th

e
De

ve
lo

pm
en

t o
f

La
rg

e
So

ftw
ar

e
Sy

st
em

s”
; h

e
su

gg
es

ts
 th

at
 th

e
[w

at
er

fa
ll]

m
et

ho
d

its
el

f i
s

in
ef

fe
ct

iv
e

an
d

th
at

 it
 w

ou
ld

 n
ee

d
to

 it
er

at
e

at
le

as
t t

w
ic

e
to

 b
e

su
cc

es
sf

ul
.

19
90

s-
 J

ef
f S

ut
he

rla
nd

 a
nd

 K
en

Sc
hw

ab
er

 c
re

at
e

a
tim

eb
ox

ed
ap

pr
oa

ch
 b

as
ed

 o
n

a
bl

en
di

ng
 o

f
Ja

pa
ne

se
 II

D
te

ch
ni

qu
es

 u
se

d
at

Ho
nd

a
(s

as
hi

m
i)

an
d

co
nc

ep
ts

fro
m

 “
Th

e
N

ew
 P

ro
du

ct
De

ve
lo

pm
en

t..
.G

am
e.

”
Th

ey
 c

al
le

d
th

e
ap

pr
oa

ch
 “

Sc
ru

m
”.

19
80

s-
 O

bj
ec

t-o
rie

nt
ed

 p
ro

gr
am

m
in

g
gu

ru
 G

ra
dy

 B
oo

ch
 a

rti
cu

la
te

s
th

e
“s

pi
ra

l d
ev

el
op

m
en

t..
.m

et
ho

d.
”

19
86

- T
he

 H
ar

va
rd

 B
us

in
es

s
Re

vi
ew

 p
ub

lis
he

s
“T

he
 N

ew
N

ew
 P

ro
du

ct
 D

ev
el

op
m

en
t

...
Ga

m
e.

”

20
01

- S
ev

en
te

en
 e

xp
er

ts
 in

 D
SD

M
, X

P,
Sc

ru
m

, F
DD

, a
nd

 o
th

er
 le

an
 m

et
ho

ds
m

et
 to

 d
is

cu
ss

 th
e

fu
tu

re
 o

f I
ID

. T
hi

s
m

ee
tin

g
re

su
lte

d
in

 th
e

te
rm

 “
ag

ile
m

et
ho

ds
”

an
d

th
e

cr
ea

tio
n

of
 th

e
Ag

ile
Al

lia
nc

e.

20
04

- S
cr

um
 A

lli
an

ce
 fo

rm
ed

.

20
12

- A
gi

le
 P

ro
je

ct
M

an
ag

em
en

t F
or

Du
m

m
ie

s
is

 p
ub

lis
he

d.

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
12

05_9781118026243-ch01.indd 1405_9781118026243-ch01.indd 14 3/30/12 3:35 PM3/30/12 3:35 PM

16 Part I: Understanding Agile

Figure 1-3:
Waterfall

versus agile
project.

RE
QU

IR
EM

EN
TS

SP
RI

N
T

1:
 H

ig
he

st
 P

rio
rit

y
Fe

at
ur

es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

-T
RA

DI
TI

ON
AL

 W
AT

ER
FA

LL
-

-A
GI

LE
-

HI
GH

ES
T

HI
GH

M
ED

IU
M

LO
W

ER

OP
TI

ON
AL

DE
SI

GN

HI
GH

ES
T

HI
GH

M
ED

IU
M

LO
W

ER

OP
TI

ON
AL

DE
VE

LO
PM

EN
T

HI
GH

ES
T

HI
GH

M
ED

IU
M

LO
W

ER

OP
TI

ON
AL

TE
ST

IN
G

HI
GH

ES
T

HI
GH

M
ED

IU
M

LO
W

ER

OP
TI

ON
AL

DE
PL

OY

HI
GH

ES
T

HI
GH

M
ED

IU
M

LO
W

ER

OP
TI

ON
AL

SP
RI

N
T

2:
 H

ig
h

Pr
io

rit
y

Fe
at

ur
es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

SP
RI

N
T

3:
 M

ed
iu

m
 P

rio
rit

y
Fe

at
ur

es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

SP
RI

N
T

4:
 L

ow
er

 P
rio

rit
y

Fe
at

ur
es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

SP
RI

N
T

5:
 O

pt
io

na
l P

rio
rit

y
Fe

at
ur

es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

S T A R T

R E L E A S E

RI
SK

 A
CC

UM
UL

AT
IO

N

05_9781118026243-ch01.indd 1605_9781118026243-ch01.indd 16 3/30/12 3:35 PM3/30/12 3:35 PM

22 Part I: Understanding Agile

A simple conversation that talks through a project issue can solve many
problems in a relatively short time. Trying to emulate the power of a direct
conversation with e-mail, spreadsheets, and documents can require a lot
of overhead. Instead of adding clarity, these types of managed, controlled
communications are often ambiguous and time-consuming and distract the
development team from the work of creating a product.

Consider what it means if you value individuals and interactions highly. Table
2-1 shows some differences between valuing individuals and interactions and
valuing processes and tools.

Table 2-1 Individuals and Interactions Versus Processes and Tools

Individuals and Interactions Have
High Value

Processes and Tools Have
High Value

Pros Communication is clear and effective.

Communication is quick and efficient.

Teamwork becomes strong as people
work together.

Development teams can self-organize.

Development teams have more
chances to innovate.

Development teams can customize
processes as necessary.

Development team members can
take personal ownership of the
project.

Development team members can
have deeper job satisfaction.

Processes are clear and can
be easy to follow.

Written records of
communication exist.

Cons Development team members must
have the capacity to be involved,
responsible, and innovative.

People may need to let go of ego to
work well as members of a team.

People may over-rely on
processes instead of finding
the best ways to create good
products.

One process doesn’t fit all
teams — different people have
different work styles.

One process doesn’t fit all
projects.

Communication can be ambig-
uous and time-consuming.

06_9781118026243-ch02.indd 2206_9781118026243-ch02.indd 22 3/30/12 3:35 PM3/30/12 3:35 PM

24 Part I: Understanding Agile

Table 2-2 Identifying Documentation That’s Useful

Document Does the Document
Support Product
Development?

Is the Document Barely
Sufficient or Gold-Plated?

Project schedule
created with
expensive
project manage-
ment software,
complete with
Gantt Chart.

No.

Start-to-finish schedules
with detailed tasks and
dates tend to provide more
than what is necessary
for product development.
Also, many of these
details change before you
develop future features.

Gold-plated.

Although project managers
may spend a lot of time
creating and updating project
schedules, the truth is project
team members tend to want
to know only key deliverable
dates. Management often
wants to know only whether
the project is on time, ahead
of schedule, or behind.

Requirements
documentation.

Yes.

All projects have
requirements — details
about product features
and needs. Development
teams need to know those
needs to create a product.

Possibly gold-plated.

Requirements documents
can easily grow to include
unnecessary details. Agile
approaches provide simple
ways to describe product
requirements.

Product
technical
specifications.

Yes.

Documenting how you
created a product can
make future changes
easier.

Possibly gold-plated; usually
barely sufficient.

Technical documentation
usually includes just what it
needs — development teams
often don’t have time for extra
flourishes and are keen to
minimize documentation.

Weekly status
report.

No.

Weekly status reports are
for management purposes,
but do not assist product
creation.

Gold-plated.

Knowing project status is help-
ful, but traditional status reports
contain outdated information
and are much more burden-
some than necessary.

Detailed project
communication
plan.

No.

While a contact list can be
helpful, the details in many
communication plans are
useless to product devel-
opment teams.

Gold-plated.

Communication plans often
end up being documents about
documentation — an egregious
example of busywork.

06_9781118026243-ch02.indd 2406_9781118026243-ch02.indd 24 3/30/12 3:35 PM3/30/12 3:35 PM

27 Chapter 2: The Agile Manifesto and Principles

Figure 2-1:
Traditional

project
opportunity
for change.

2 Years - no change

2 WeeksPotential
Change Potential

Change Potential
Change Potential

Change Potential
Change Potential

Change Potential
Change

By contrast, agile projects accommodate change systematically. In later
chapters, you discover how the agile approaches to planning, working, and
prioritization allow project teams to respond quickly to change. The flexibility
of agile approaches actually increases project stability, because change on
agile projects is predictable and manageable.

As new events unfold, the project team incorporates those realities into the
ongoing work. Any new item becomes an opportunity to provide additional
value instead of an obstacle to avoid, giving development teams a greater
opportunity for success.

Defining the 12 Agile Principles
In the months following the publication of the Agile Manifesto, the original
signatories continued to communicate. They augmented the four values of
the Manifesto with 12 guiding Agile Principles to support teams making the
transition to agile.

 These principles, along with the Platinum Principles, explained later in the
section, “Adding the Platinum Principles,” can be used as a litmus test to see
whether the specific practices of your project team are true to the intent of
the agile movement.

Following is the text of the original 12 Principles, published in 2001 by the
Agile Alliance:

 1. Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

 2. Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

06_9781118026243-ch02.indd 2706_9781118026243-ch02.indd 27 3/30/12 3:35 PM3/30/12 3:35 PM

30 Part I: Understanding Agile

 In Table 2-3, I have listed some customer satisfaction issues that commonly arise
on projects. Use Table 2-3 and gather some examples of customer dissatisfaction
that you’ve encountered. Do you think agile project management would make a
difference? Why or why not?

 You can find a blank form at www.dummies.com/go/agileproject
managementfd

Table 2-3 Customer Dissatisfaction and How Agile Might Help

Examples of Customer
Dissatisfaction with Projects

How Agile Approaches Can Increase
Customer Satisfaction

The product requirements
were misunderstood by the
development team.

Product owners work closely with the customer
to define and refine product requirements and
provide clarity to the development team.

Agile project teams demonstrate and deliver
working product features at regular intervals. If
a product doesn’t work the way the customer
thinks it should work, the customer is able to
provide feedback at the end of the sprint, not
the end of the project.

The product wasn’t delivered
when customer needed it.

Working in sprints allows agile project teams
to deliver high-priority product features early
and often.

The customers can’t request
changes without additional
cost and time.

Agile processes are built for change.
Development teams can accommodate new
requirements, requirement updates, and shifting
priorities with each sprint — offsetting the cost
of these changes by removing the lowest priority
requirements.

 Agile provides specific strategies for customer satisfaction, as follows:

 ✓ Producing, in each iteration, the highest-priority features first

 ✓ Ideally, locating the product owner and the other members of the project
team in the same place

 ✓ Breaking requirements into groups of features that can be delivered in
eight (ideally, four) weeks or less

 ✓ Keeping written requirements sparse, forcing more robust and effective
face-to-face communication

 ✓ Getting the product owner’s approval as each feature is completed

 ✓ Revisiting the feature list regularly to ensure that the most valuable
requirements continue to have the highest priority

06_9781118026243-ch02.indd 3006_9781118026243-ch02.indd 30 3/30/12 3:36 PM3/30/12 3:36 PM

36 Part I: Understanding Agile

If you’ve worked on a project before, you might have a basic understanding of
project management activities. In Table 2-4, I’ve listed a few traditional project
management tasks, along with how you would meet those needs with agile
approaches. Use Table 2-4 to capture your thoughts about your prior experiences
and how agile looks different from traditional project management.

 A blank version of Table 2-4 is available at www.dummies.com/go/agile
projectmanagementfd

Table 2-4 Contrasting Historical Project Management
 with Agile Project Management

Traditional Project Management Tasks Agile Approach to the Project
Management Task

Create a fully detailed project require-
ment document at the beginning of
the project. Try to control requirement
changes throughout the project.

Create a product backlog — a simple
list of requirements by priority. Quickly
update the product backlog as require-
ments and priorities change throughout
the project.

Conduct weekly status meetings with
all project stakeholders and developers.
Send out detailed meeting notes and
status reports after each meeting.

The development team meets quickly,
for no longer than 15 minutes, at the
start of each day to discuss that day’s
work and any roadblocks. They can
update the centrally visible burndown
chart in under a minute at the end of
each day.

Create a detailed project schedule with
all tasks at the beginning of the project.
Try to keep the project tasks on schedule.
Update the schedule on a regular basis.

Work within sprints and identify only
specific tasks for the active sprint.

Assign tasks to the development team. Support the development team by helping
remove impediments and distractions.
On agile projects, development teams
define their own tasks.

 Project management is facilitated by the following:

 ✓ Supporting the development team

 ✓ Producing barely sufficient documents

 ✓ Streamlining status reporting so that information is pushed out by the
development team in seconds rather than pulled out by a project manager
over longer periods of time

 ✓ Minimizing nondevelopment tasks

06_9781118026243-ch02.indd 3606_9781118026243-ch02.indd 36 3/30/12 3:36 PM3/30/12 3:36 PM

40 Part I: Understanding Agile

Figure 2-2:
Charts,

graphs, and
dashboards

for report-
ing project

status.

Bu
rn

do
w

n:
 E

st
 H

rs
 R

em
ai

ni
ng

40
0

45
0

35
0

30
0

25
0

20
0

15
0

10
0 50 0

1

Estimated Hrs Remaining

2
3

4
5

6
Da

ys
 in

 S
pr

in
t

Ac
tu

al
Sc

he
du

le

7
8

9

38
7

34
4

30
1

25
8

21
5

17
2

12
9

86

43

M
y X

YZ
 M

ob
ile

 B
an

kin
g

- S
pr

in
t 1

Sp
rin

t d
at

es
: F

eb
ru

ar
y 4

 -
Fe

br
ua

ry
 15

Sp
rin

t G
oa

l
As

 a
 <

m
ob

ile
 b

an
kin

g
cu

st
om

er
>,

I w
an

t t
o

<l
og

 in
 to

 m
y a

cc
ou

nt
>

So
 I

ca
n

<v
ie

w
 m

y a
cc

ou
nt

 b
al

an
ce

s a
nd

 p
en

di
ng

 tr
an

sa
ct

io
ns

>.

Bu
rn

do
w

n
- B

as
ed

 o
n

Es
t H

ou
rs

 R
em

ai
ni

ng
Nu

m
be

r o
f w

or
kin

g
da

ys
Le

on
a

(3
5 h

rs
 w

k)
Jo

ey
 (3

5 h
rs

 w
k)

Bo
b

(3
5 h

rs
 w

k)
M

ar
ie

 (2
0 h

rs
 w

k)
Pa

bl
o

(3
5 h

rs
 w

k)
M

ad
iso

n
(3

5 h
rs

 w
k)

Fe
at

ur
e

Bu
rn

do
w

n
- B

as
ed

 o
n

Es
t H

ou
rs

 R
em

ai
ni

ng

Ta
sk

Us
er

 S
to

ry
 #1

: A
ut

he
nt

ic
at

e
an

d
Ac

ce
ss

 M
y A

cc
ou

nt
s

Cr
ea

te
 a

ut
he

nt
ic

at
io

n
sc

re
en

 fo
r u

se
rn

am
e

&
pa

ss
w

or
d

w
ith

 su
bm

it
bu

tto
n

Cr
ea

te
 e

rro
r s

cr
ee

n
fo

r u
se

r t
o

re
-e

nt
er

 c
re

de
nt

ia
ls

Cr
ea

te
 lo

gg
ed

 in
 sc

re
en

Us
in

g
au

th
en

tic
at

io
n

co
de

 fr
om

 o
nl

in
e

ba
nk

in
g

ap
pl

ic
at

io
n,

 d
ev

el
op

lo
gi

n
co

de
 fo

r i
Ph

on
e

/ i
Pa

d
ap

pl
ic

at
io

n
Cr

ea
te

 c
al

ls
to

 d
at

ab
as

e
to

 ve
rif

y u
se

rn
am

e
&

pa
ss

w
or

d
Cr

ea
te

 a
ut

he
nt

ic
at

io
n

sc
re

en
 fo

r u
se

rn
am

e
&

pa
ss

w
or

d
w

ith
 su

bm
it

bu
tto

n
Cr

ea
te

 e
rro

r s
cr

ee
n

fo
r u

se
r t

o
re

-e
nt

er
 c

re
de

nt
ia

ls
Cr

ea
te

 lo
gg

ed
 in

 sc
re

en
Us

in
g

au
th

en
tic

at
io

n
co

de
 fr

om
 o

nl
in

e
ba

nk
in

g
ap

pl
ic

at
io

n,
 d

ev
el

op
lo

gi
n

co
de

 fo
r i

Ph
on

e/
iP

ad
 a

pp
lic

at
io

n
Cr

ea
te

 c
al

ls
to

 d
at

ab
as

e
to

 ve
rif

y u
se

rn
am

e
&

pa
ss

w
or

d

1 3 1 2 1 3 3 2 2 2

8 4 16 24 24 8 8 16 4 4

8 4 16 24 24 8 8 16 4 4

8 4 16 24 24 8 8 16 4 4

0 4 16 8 8 8 8 16 4 4

0 4 16 4 4 8 8 4 4 4

0 4 16 0 0 0 0 0 0 0

0 0 16 0 0 0 0 0 0 0

0 0 16 0 0 0 0 0 0 0

0 0 12 0 0 0 0 0 0 0

0 0 12 0 0 0 0 0 0 0

Co
m

pl
et

ed
Co

m
pl

et
ed

In
 p

ro
gr

es
s

In
 p

ro
gr

es
s

Co
m

pl
et

ed

Co
m

pl
et

ed
Co

m
pl

et
ed

Co
m

pl
et

ed

Co
m

pl
et

ed
Co

m
pl

et
ed

M
ad

iso
n

M
ar

ie
Pa

bl
o

Le
on

a
Bo

b

Le
on

a
Le

on
a

Le
on

a

Le
on

a
Le

on
a

Pr
io

rit
y

St
at

us
Re

sp
on

sib
le

PO
Ap

pr
ov

ed
?

M
o 4

Tu 5
W 6

Th 7
F 8

M 11
T 12

Th 14
W 13

F 15

9 63 63 63 36 63 63 36
0 40

To
ta

l:
To

ta
l p

er
 d

ay
:

06_9781118026243-ch02.indd 4006_9781118026243-ch02.indd 40 3/30/12 3:36 PM3/30/12 3:36 PM

44 Part I: Understanding Agile

When you have a critical looming deadline, your instinct is to go agile.
Formality goes out of the window as you roll up your sleeves and focus on what
has to get done. You solve problems quickly, practically, and in descending
order of necessity, making sure you complete the most critical tasks.

When you go agile, you don’t institute unreasonable deadlines to force greater
focus. Instead, you realize that people function well as practical problem solvers,
even under stress. For example, a popular team-building exercise titled the
marshmallow challenge involves groups of four people building the tallest
free-standing structure possible out of 20 sticks of spaghetti, a yard of tape, and
a yard of string, and then placing a marshmallow on the top — in 18 minutes.
See www.marshmallowchallenge.com for background information about the
concept. On that site, you can also view the associated TED Talk by Tom Wujec.

Wujec points out that young children usually build taller and more interesting
structures than most adults because children build incrementally on a series
of successful structures in the time allotted. Adults spend a lot of time planning,
produce one final version, and then run out of time to correct any mistakes.
The youngsters provide a valuable lesson that big bang development — namely,
excessive planning and then one shot at product creation — doesn’t work.
Formality, excessive time detailing uninformed future steps, and a single plan
are often detriments to success.

The marshmallow challenge sets opening conditions that mimic those in
real life. You build a structure (which equates to a software product in the
IT industry) using fixed resources (four people, spaghetti, and so on) and
a fixed time (18 minutes). What you end up with is anyone’s guess, but an
underlying assumption in historical project management approaches is that
you can determine the precise destination (the features or requirements) in
the beginning and then estimate the people, resources, and time required.

This assumption is upside down from how life really is. As you can see in
Figure 3-1, the theories of historical methods are the reverse of agile approaches.
We “pretend” that we live in the world on the left, but we actually live in the
world on the right.

Figure 3-1: A
comparison
of historical

project
management

and agile
concepts.

Fixed
requirements

Estimated
resouces

Estimated
time

Estimated
features

WATERFALL AGILE

Guess driven

Fixed
resources

Opposite
Approach

Fixed
time

Priority driven

07_9781118026243-ch03.indd 4407_9781118026243-ch03.indd 44 3/30/12 3:36 PM3/30/12 3:36 PM

45 Chapter 3: Why Agile Works Better

In the historical approach, which locks the requirements and delivers the
product all in one go, the result is all or nothing. We either succeed completely
or fail absolutely. The stakes are high because everything hinges on work
that happens at the end (that is, putting the marshmallow on the top) of the
final phase of the cycle, which includes integration and customer testing.

In Figure 3-2, you can see how each phase of a project in the most common
historical project management methodology, waterfall, is dependent on the
previous one. Teams design and develop all features together, meaning you
don’t get the highest-priority feature until you’re done developing the lowest-
priority feature. The customer has to wait until the end of the project to get
final delivery of any element of the product.

In the testing phase of a waterfall project, the customers get to see their long-
awaited product. By that time, the investment and effort have been huge, and
the risk of failure is high. Finding bugs among all of the completed product
requirements is like looking for a weed in a cornfield.

Agile project management turns the concept of how software development
should be done upside down. Using agile methods, you develop, test, and
launch small groups of product requirements in short iterative cycles, known
as iterations, as illustrated in Figure 3-3. Testing occurs during each iteration.
To find bugs, the development team looks for a weed in a flower pot, rather
than in a cornfield.

Figure 3-2:
The water-
fall project

cycle is a
linear

method-
ology.

S
T
A
R
T

R
E
L
E
A
S
E

REQUIREMENTS

HIGHEST
HIGH
MEDIUM
LOWER
OPTIONAL

DESIGN

HIGHEST
HIGH
MEDIUM
LOWER
OPTIONAL

DEVELOPMENT

HIGHEST
HIGH
MEDIUM
LOWER
OPTIONAL

TESTING

HIGHEST
HIGH
MEDIUM
LOWER
OPTIONAL

DEPLOY

HIGHEST
HIGH
MEDIUM
LOWER
OPTIONAL

TRADITIONAL WATERFALL

07_9781118026243-ch03.indd 4507_9781118026243-ch03.indd 45 3/30/12 3:36 PM3/30/12 3:36 PM

46 Part I: Understanding Agile

Figure 3-3:
Agile

approaches
have an
iterative
project
cycle.

ITERATION 1:
Highest Priority Features

ITERATION 2:
High Priority Features

S
T
A
R
T

R
E
L
E
A
S
E

Design
Test

Test

Test

Develop Integrate

REQUIREM
ENTS

DEM
O & FEEDBACK

Design
Test

Test

Test

Develop Integrate

REQUIREM
ENTS

DEM
O & FEEDBACK

ITERATION 3:
Medium Priority Features

Design
Test

Test

Test

Develop Integrate

REQUIREM
ENTS

DEM
O & FEEDBACK

ITERATION 4:
Lower Priority Features

Design
Test

Test

Test

Develop Integrate

REQUIREM
ENTS

DEM
O & FEEDBACK

ITERATION 5:
Optional Features

Design
Test

Test

Test

Develop Integrate

REQUIREM
ENTS

DEM
O & FEEDBACK

Product owner, scrum master, and sprint are terms from scrum, a popular agile
framework for organizing work. Scrum refers to a rugby huddle, in which a
rugby team locks together over the ball. Scrum as an approach, like rugby,
encourages the project team to work together closely and take responsibility
for the result. You find out more about scrum and other agile methodologies
in Chapter 4.

Moreover, on an agile project, the customers get to see their product at the
end of every short cycle. You can create the highest-priority features first,
which gives you the opportunity to ensure maximum value early on, when
little of the customer’s money has been invested.

The agile concept is attractive, especially to risk-averse organizations. In
addition, if your product has market value, revenue can be coming in even
during development. Now you have a self-funding project!

07_9781118026243-ch03.indd 4607_9781118026243-ch03.indd 46 3/30/12 3:36 PM3/30/12 3:36 PM

50 Part I: Understanding Agile

planning stage of a project is different than the execution where reality sets
in, and there is no natural point of give in a long project.

Now look at the bottom image in Figure 3-4. The small steel bars represent
two-week iterations within a project. It is much easier for those small bars to
be stable and unchanging, than it is for the larger bar. In the same manner, it
is easier to have project stability in smaller increments with known flexibility
points. Telling a business there can be no changes for two weeks is much easier
and more realistic than telling them there can be no changes for two years.

Agile projects are great at accommodating change because the means for
regular change are built into everyday processes. At the same time, iterations
on agile projects offer distinct areas for project stability. Agile project teams
accommodate changes to the product backlog anytime but do not generally
accommodate external changes to scope during the sprint. The product backlog
may be constantly changing, but, except in emergencies, the sprint is generally
very stable.

At the beginning of the iteration, the development team plans the work it will
complete for that sprint. After the sprint begins, the development team works
only on the planned requirements. A couple of exceptions to this plan can
occur — if the development team finishes early, it can request more work;
if an emergency arises, the product owner can cancel the sprint. In general,
however, the sprint is a time of great stability for the development team.

This stability can lead to innovation. When development team members have
stability — that is, they know what they will be working on in a set period of
time — they will think about their tasks consciously at work. They may also
think about tasks unconsciously away from work and tend to come up with
solutions at any given time.

Agile projects provide a constant cycle of development, feedback, and
change, allowing project teams the flexibility to create products with only the
right features and the stability to be creative.

Figure 3-4:
Stability in

flexibility
on agile

projects.

2 Years - no change

2 WeeksPotential
Change Potential

Change Potential
Change Potential

Change Potential
Change Potential

Change Potential
Change

07_9781118026243-ch03.indd 5007_9781118026243-ch03.indd 50 3/30/12 3:36 PM3/30/12 3:36 PM

56 Part I: Understanding Agile

and when most of the investment is gone. Waiting until the final weeks or
days of the project to find out that the software has serious issues is risky
for all concerned. Figure 3-5 compares the risk and investment profile for the
waterfall with that for agile approaches.

Along with opportunities for tighter project control, the agile framework
offers you

 ✓ Earlier and more frequent opportunities to detect failure

 ✓ An assessment and action opportunity every few weeks

 ✓ Reduction in failure costs

What sorts of failures have you seen on projects? Would agile approaches have
helped? You can find out more about risk on agile projects in Chapter 15.

Figure 3-5:
A risk and

investment
chart

comparing
waterfall
and agile
method-
ologies.

Cost Investment
Impact of Termination
Business Value (ROI)

Waterfall

Time Time

$$
and
Risk

$$
and
Risk

Agile

Why People Like Agile
You’ve seen how an organization can benefit from agile project management
with faster product delivery and lower costs. In the following sections, you
find out how the people involved in a project can benefit as well, whether
directly or indirectly.

Executives
Agile project management provides two benefits that are especially attractive
to executives: efficiency and higher, quicker return on investment.

07_9781118026243-ch03.indd 5607_9781118026243-ch03.indd 56 3/30/12 3:36 PM3/30/12 3:36 PM

65 Chapter 4: Agile Frameworks

Figure 4-1:
Early hard-

ware and
software.

Figure 4-2:
The origins

of waterfall.

System
requirements

Software
requirements

Analysis

Program
design

Coding

Testing

Operations

09_9781118026243-ch04.indd 6509_9781118026243-ch04.indd 65 3/30/12 3:37 PM3/30/12 3:37 PM

66 Part II: Being Agile

The irony here is that, even though the diagram implies that you complete
tasks step by step, Dr. Royce himself added the cautionary note that you
need iteration. Here’s how he stated it:

“If the computer program in question is being developed for the first time,
arrange matters so that the version being delivered to the customer for
operational deployment is actually the second version insofar as critical
design/operations areas are concerned.”

Royce even included the diagram shown in Figure 4-3 to illustrate that iteration.

Now, I’m not sure if the diagram was stuck with chewing gum to other pages,
but the software development community by and large lost this part of the
story. After you allow the idea that you might not know everything when you
first start developing a software component and might have to revisit the
code to ensure that it’s appropriate, you have the ray of light that lets in agile
concepts. Agile might have come to prominence 40 years earlier if people had
taken Dr. Royce’s actual advice to heart!

Figure 4-3:
Iteration in

waterfall.

System
requirements

Software
requirements

Preliminary
program
design

Analysis

Program
design

Coding

Operations

Preliminary
design

Analysis

Program
design

Coding

Testing

Usage

Testing

09_9781118026243-ch04.indd 6609_9781118026243-ch04.indd 66 3/30/12 3:37 PM3/30/12 3:37 PM

68 Part II: Being Agile

Figure 4-4:
A modern

kanban
board.

PRE-PRESS PROOF PRINT PRINT

One big cost of the mass production processes at the time was that humans
on the production line were treated like machines: People had no autonomy
and could not solve problems, make choices, or improve processes. The work
was boring and set aside human potential. By contrast, the just-in-time process
gives workers the ability to make decisions about what is most important to do
next. The workers take responsibility for the results. Toyota’s success with just-
in-time processes has helped change mass manufacturing approaches globally.

Understanding lean and software development
The term lean was coined in the 1990s in The Machine That Changed the World:
The Story of Lean Production by James P. Womack, Daniel T. Jones, and Daniel
Roos. eBay was an early adopter of lean principles for software development.
The company led the way with an approach that responded daily to customers’
requests for changes to the website, developing high-value features in a short
time period.

The focus of lean is business value and minimizing activities outside of product
development. Mary and Tom Poppendieck discuss a group of lean principles
on their blog and in their books on lean software development. The lean
principles are

 ✓ Optimize the whole. Solve problems, not just symptoms. Deliver working
products. Think long-term when creating solutions.

 ✓ Eliminate waste. Waste includes failing to learn from work, building the
wrong thing, and thrashing — only partially creating lots of product features.

09_9781118026243-ch04.indd 6809_9781118026243-ch04.indd 68 3/30/12 3:37 PM3/30/12 3:37 PM

71 Chapter 4: Agile Frameworks

Table 4-1 Key Practices of Extreme Programming

XP Practice Underpinning Assumption

Planning
game

All members of the team should participate in planning. No
disconnect exists between business and technical people.

Whole team The customer needs to be collocated (physically located
together) with the development team and be available. This
accessibility enables the team to ask more minor questions, quickly
get answers, and ultimately deliver a product more aligned with
customer expectations.

Coding
standards

Use coding standards for consistency; don’t constantly reinvent
the basics of how to develop products within your organization.
Standard code identifiers and naming conventions are two examples
of having coding standards.

System
metaphor

When describing how the system works, use an implied comparison,
a simple story that is easily understood (for instance, “the system
is like cooking a meal”).

Collective
code
ownership

The entire team is responsible for the quality of code. Any engineer
can modify another engineer’s code to enable progress to continue.

Sustainable
pace

Overworked people are not effective. Too much work leads
to mistakes, which leads to more work, which leads to more
mistakes. Avoid working more than 40 hours per week for an
extended period of time.

Pair
programming

Two people work together on a programming task. One person is
strategic, and one person is tactical. They explain their approach
to each other. No piece of code is understood by only one person.

Design
improvement

Continuously improve design by refactoring code — removing
duplications within the code.

Simple
design

The simpler the design, the lower the cost to change the software
code.

Test-driven
development
(TTD)

Write automated customer acceptance and unit tests before you
code anything. Test your success before you claim progress.

Continuous
integration

Team members should be working from the latest code. Integrate
code components across the development team as often as possible
to identify issues and take corrective action before problems build
on each other.

Refactoring Expect to improve code constantly. The fewer dependencies, the better.
Small
releases

Release value to the customer often. Avoid going more than three
to four months without a customer release. Some organizations
release daily.

09_9781118026243-ch04.indd 7109_9781118026243-ch04.indd 71 3/30/12 3:37 PM3/30/12 3:37 PM

72 Part II: Being Agile

Figure 4-5:
The scrum
approach.

Potentially
shippable
product

increment
Daily scrum

meeting
Sprint

retrospective

Sprint backlog

Sprint planning

Sprint review

Product
backlog

Requirements

2 - 4 Weeks

24 hours

Going the distance with the sprint
Within each sprint, the development team develops and tests a functional part
of the product until the product owner accepts it and the functionality becomes
a potentially shippable product. When one sprint finishes, another sprint starts.
Scrum teams deliver product features in increments at the end of each sprint. A
product release occurs at the end of a sprint or after several sprints.

 A core principle of the sprint is its cyclical nature: The sprint, as well as the
processes within it, repeats over and over, as shown in Figure 4-6.

Figure 4-6:
Sprints are

recurring
processes.

Sprint Recurring Processes

Sprint Planning Meeting

GOAL: To identify which
requirements will be developed

GOAL: Showcase to stakeholders
the iteration’s completed features

GOAL: Tactical coordination of the day’s
priorities by the development team

Daily Scrum = Each day

REQUIREMENT 1

ACCEPTAN
CE

Design

Test

TestTest

IntegrateDevelop

ELABORATION

Sprint = 1 – 4
Weeks

GOAL: Honest review of the
process with consensus on

how to adapt it

GOAL: Completion and
acceptance of features

Sprint

Retrospective

Sprint Review

REQUIREMENT 2

ACCEPTAN
CE

Design

Test

TestTest

IntegrateDevelop

ELABORATION

REQUIREMENT 3

ACCEPTAN
CE

Design

Test

TestTest

IntegrateDevelop

ELABORATION

09_9781118026243-ch04.indd 7209_9781118026243-ch04.indd 72 3/30/12 3:37 PM3/30/12 3:37 PM

75 Chapter 4: Agile Frameworks

Table 4-2 Similarities Between Lean, Extreme Programming, and Scrum

Lean Extreme Programming Scrum

Engaging everyone Entire team

Collective ownership

Cross-functional develop-
ment team

Optimizing the whole Test-driven development

Continuous integration

Product increment

Delivering fast Small release One- to four-week sprints

Essential credentials
If you are — or want to be — an agile
practitioner, you may consider getting one or
more of the agile certifications available today.
The certification training alone can provide
valuable information and the chance to practice
agile processes — lessons you can use in your
everyday work. Certification can also boost
your career, as many organizations want to hire
people with proven agile knowledge.

There are a number of well-recognized
certifications to choose from, including

 ✓ PMI Agile Certified Practitioner (PMI-ACP)

 The Project Management Institute (PMI)
is the largest professional organization
for project managers in the world. In 2012,
PMI introduced the PMI-ACP certification.
The PMI-ACP requires training, general
project management experience, experience
working on agile projects and passing
an exam on your knowledge of agile
fundamentals. See p m i . o r g /
Certification/New-PMI-Agile-
Certification.aspx.

 ✓ Certified ScrumMaster (CSM)

 The Scrum Alliance, a professional orga-
nization that promotes the understanding
and use of scrum, offers a certification for

scrum masters. The CSM requires a two-
day training class, provided by a Certified
Scrum Trainer and completing a CSM
evaluation. CSM training provides an overall
view of scrum and is a good starting point
for people starting their agile journey. See
scrumalliance.org/pages/CSM.

 ✓ Certified Scrum Product Owner (CSPO)

 The Scrum Alliance also provides a
certification for product owners. Like the
CSM, the CSPO requires two days of training
from a Certified Scrum Trainer. CSPO
training provides a deep dive into product
owner role. See scrumalliance.
org/pages/certified_scrum_
product_owner.

 ✓ Certified Scrum Developer (CSD)

 For development team members, the
Scrum Alliance offers the CSD. The CSD is a
technical-track certification, dependent on
five days of training from a Certified Scrum
Trainer and passing an exam on agile engi-
neering techniques. CSM or CSPO training
can count toward a CSD; the remaining
three days are a technical skills course.
See scrumalliance.org/pages/
certified_scrum_product_owner.

09_9781118026243-ch04.indd 7509_9781118026243-ch04.indd 75 3/30/12 3:37 PM3/30/12 3:37 PM

79 Chapter 5: Putting Agile into Action: The Environment

and two people at a white board — with collocation, you get the benefit of
better communication.

Figure 5-1:
Better com-
munication

through
collocation.

Richness (“temperature”) of communication channel

Paper

Cold Hot

2 people
on e-mail

2 people at
white board

2 people
on phone

Videotape

(No question-answer)

(Question-and-answer)

Audiotape

Co
m

m
un

ic
at

io
n

Ef
fe

ct
ive

ne
ss

Setting up a dedicated area
If the scrum team members are in the same physical place, you want to
create as ideal a working environment for them as you can. The first step is
to create a dedicated area.

Set up an environment where the scrum team can work in close physical
proximity. If possible, the scrum team should have its own room, some-
times called a project room or scrum room. The scrum team members create
the setup they need in this project room, putting whiteboards and bulletin
boards on the walls and moving the furniture. By arranging the space for
productivity, it becomes part of how they work. If a separate room isn’t pos-
sible, a pod — with workspaces around the edges and a table or collaboration
center in the middle — works well.

If you’re stuck in cube city and can’t tear down walls, ask for some empty
cubes in a group and remove the dividing panels. Create a space that you can
treat as your project room.

 The right space allows the scrum team to be fully immersed in solving prob-
lems and crafting solutions.

The situation you have may be far from perfect, but it’s worth the effort to
see how close you can get to the ideal. Before you implement agile in your

10_9781118026243-ch05.indd 7910_9781118026243-ch05.indd 79 3/30/12 3:37 PM3/30/12 3:37 PM

80 Part II: Being Agile

organization, ask management for the resources necessary to create an opti-
mal condition. Resources will vary from project to project, but at a minimum,
they can include white boards, bulletin boards, markers, pushpins, and sticky
notes. You’ll be surprised at how quickly the efficiency gains pay for the
investment and more.

For example, with one client company, dedicating a project room and making
a $6,000 investment in multiple monitors for developers increased productiv-
ity, which saved the company almost two months and $60,000 over the life of
the project. That’s a pretty good return on investment. We show you how to
quantify these savings early on in the project in Chapter 13.

Removing distractions
The development team needs to focus, focus, focus. The methodologies
based on agile are designed to create structure for highly productive work
carried out in a specific way. The biggest threat to this productivity is dis-
traction, such as . . . hold on a minute, I need to take a call.

Okay, I’m back. The good news is that an agile team has someone dedicated
to deflecting or eliminating distractions: the scrum master. Whether you’re
going to be taking on a scrum master role or some other role, you need to
understand what sorts of distractions can throw the development team off
course and how to handle them. Table 5-1 is a list of common distractions
and do’s and don’ts for dealing with distractions.

Table 5-1 Common Distractions

Distraction Do Don’t

Multiple
projects

Do make sure that the
development team is
dedicated 100 percent to a
single project — this one!

Don’t fragment the develop-
ment team between multiple
projects, operations support,
and special duties.

Multitasking Do keep the development
team focused on a single
task, ideally coding one
piece of functionality at
a time. A task board can
help keep track of the
tasks in progress and
quickly identify whether
someone is working on
multiple tasks at once.

Don’t let the development
team switch requirements.
Switching tasks creates
a huge overhead in lost
productivity.

10_9781118026243-ch05.indd 8010_9781118026243-ch05.indd 80 3/30/12 3:37 PM3/30/12 3:37 PM

81 Chapter 5: Putting Agile into Action: The Environment

Distraction Do Don’t

Over-
supervising

Do leave development
team members alone
after you collaborate on
iteration goals; they can
organize themselves.
Watch their productivity
skyrocket.

Don’t interfere with the devel-
opment team or allow others to
do so. The daily scrum meeting
provides ample opportunity to
assess progress.

Outside
influences

Do redirect any distracters.
If another task surfaces,
ask the product owner to
decide whether the task’s
priority is worth sacrificing
sprint functionality.

Don’t mess with the develop-
ment team members and their
work. They’re pursuing the
sprint goal, which is the top
priority during an active sprint.
Even a seemingly quick task
can throw off work for an
entire day.

Management Do shield the development
team from direct requests
from management (unless
management wants to
give team members a
bonus for their excellent
performance).

Don’t allow management to
negatively affect the pro-
ductivity of the development
team. Make interrupting the
development team the path of
greatest resistance.

 Distractions sap the development team’s focus, energy, and performance. The
scrum master needs strength and courage to manage and deflect interrup-
tions. Every distraction averted is a step toward success.

Going mobile
Judging by the “Going mobile” heading, you might have thought this section
was about smartphone teleconferencing, but it isn’t. Agile is a responsive
approach, and scrum team members require an environment that helps them
respond to the project needs of the day. An agile team environment should
be mobile — literally:

 ✓ Use moveable desks and chairs so that people can move about and
reconfigure the space.

 ✓ Get wirelessly connected laptops so that scrum team members can pick
them up and move them about easily.

 ✓ Have a large mobile white board. Also see the next section on low-tech
communication.

10_9781118026243-ch05.indd 8110_9781118026243-ch05.indd 81 3/30/12 3:37 PM3/30/12 3:37 PM

84 Part II: Being Agile

Figure 5-2:
A white

board and
kanban

board used
in agile.

SPRINT IN PROGRESS VERIFY DONE

= User Story

= Task

RELEASE GOAL:
Goal goes here
RELEASE DATE:
March 31, 2010

Goal goes here
SPRINT GOAL:

SPRINT REVIEW:
Feb. 14, 2010

US Task Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task Task

Task Task

Task Task

Task Task

Task Task

Task Task

US

US

US

US

High-Tech Communicating
Although collocation almost universally improves effectiveness, many scrum
teams can’t be collocated. Some projects have teammates scattered across
multiple offices; others have off-shore development teams around the world.
If your scrum team can’t be collocated, don’t give up on agile. Instead, simu-
late collocation as much as possible.

When scrum team members work in different places, you have to make a
greater effort to set up an environment that creates a sense of connected-
ness. To span distance and time zones, you need more sophisticated commu-
nication mechanisms.

Don’t reinvent the wheel!
In the past, manufacturing processes often
involved partially completed items being
shipped to another location for completion. In
these situations, the kanban board on a factory
wall in the first location needed to be seen by
shop floor management at the second location.

Electronic kanban board software was devel-
oped to resolve this problem, but interestingly,
the software looked like a literal kanban board
on the wall and was used in the same way.
Don’t fix what’s working.

10_9781118026243-ch05.indd 8410_9781118026243-ch05.indd 84 3/30/12 3:37 PM3/30/12 3:37 PM

88 Part II: Being Agile

 The term scrum comes from the sport of rugby. During rugby games, players
can form tight huddles, called scrums, to gain control of the ball. In rugby
games, as on agile projects, team members must work together closely to suc-
ceed. The Harvard Business Review first used the rugby scrum metaphor in
“New New Product Development Game,” an early concept framework for the
scrum development approach discussed in this book.

The development team, product owner, and scrum master together make up
the scrum team.

The development team, product owner, and scrum master are all roles in the
scrum framework. The following roles are not part of the scrum framework
but are still critically important to agile projects:

 ✓ Stakeholders

 ✓ Agile mentor

The scrum team, together with the stakeholders, makes up the agile project
team. Figure 6-1 shows how these roles and teams fit together. This section
discusses these roles in detail.

Figure 6-1:
Agile

project
team, scrum

team, and
develop-

ment team
members.

Scrum Team

Product Owner

Stakeholders Agile Mentor

Scrum Master

Development Team Member 1
Development Team Member 2
Development Team Member 3

11_9781118026243-ch06.indd 8811_9781118026243-ch06.indd 88 3/30/12 3:38 PM3/30/12 3:38 PM

89 Chapter 6: Putting Agile into Action: The Behaviors

Development team
Development team members are the people who create the product.
Programmers, testers, designers, writers, and anyone else who has a hands-
on role in product development are development team members.

On an agile project, the development team is

 ✓ Directly accountable for creating project deliverables.

 ✓ Self-organizing and self-managing. The development team members
determine their own tasks and how they want to complete those tasks.

 ✓ Cross-functional. Development team members are not tied to a single
skillset. They have existing skills to immediately contribute at the begin-
ning of the project, but they are also willing to learn new skills and to
teach what they know to other development team members.

 ✓ Ideally dedicated to one project for the duration of the project.

 ✓ Ideally collocated. The team should be working together in the same
area of the same office.

What makes a good agile team member? Take a look at the team responsibili-
ties and matching characteristics in Table 6-1.

Table 6-1 Characteristics of a Good Agile Team Member

Responsibility A Good Agile Team Member . . .

Creates the product. Enjoys creating products.

Is skilled in at least one of the jobs necessary
to create the product.

Is self-organizing and self-
managing.

Exudes initiative and independence.

Understands how to work through impedi-
ments to achieve goals.

Is cross-functional. Has curiosity.

Willingly contributes to areas outside his or
her mastery.

Enjoys learning new skills.

Enthusiastically shares knowledge.
Is dedicated and collocated. Is part of an organization that understands

the gains in efficiency and effectiveness
associated with focused, collocated teams.

11_9781118026243-ch06.indd 8911_9781118026243-ch06.indd 89 3/30/12 3:38 PM3/30/12 3:38 PM

91 Chapter 6: Putting Agile into Action: The Behaviors

Table 6-2 outlines the responsibilities and their matching characteristics of a
product owner.

Table 6-2 Characteristics of a Good Product Owner

Responsibility A Good Product Owner . . .

Supplies project strategy and
direction.

Envisions the completed product.

Firmly understands company strategy.
Provides product expertise. Has worked with similar products in the past.

Understands needs of the people who will use
the product.

Understands customer and
other stakeholder needs.

Understands relevant business processes.

Creates a solid customer input and feedback
channel.

Works well with business stakeholders.
Manages and prioritizes
product requirements.

Focuses on efficiency.

Remains flexible.

Is decisive.

Turns stakeholder feedback into valuable,
customer-focused features.

Is practical about prioritizing financially valuable
features, high-risk features, and strategic system
improvements.

Is responsible for budget and
profitability.

Understands which product features can deliver
the best return on investment.

Manages budgets effectively.
Decides on release dates. Understands business needs regarding timelines.
Works with development
team.

Works with the development team to understand
capabilities.

Works well with developers.

Adeptly describes product features.

Avails himself or herself for questions and clarifi-
cation every day.

Accepts or rejects work. Understands requirements and ensures that
completed features work correctly.

Presents completed work at
the end of each sprint.

Clearly introduces the accomplishments of the
sprint before the development team demon-
strates the sprint’s working functionality.

11_9781118026243-ch06.indd 9111_9781118026243-ch06.indd 91 3/30/12 3:38 PM3/30/12 3:38 PM

93 Chapter 6: Putting Agile into Action: The Behaviors

Scrum masters have strong communication skills, with enough organizational
clout to secure the conditions for success by negotiating for the right envi-
ronment, protecting the team from distractions, and removing impediments.
Scrum masters are great facilitators and great listeners. They can negotiate
their way through conflicting opinions and help the team help itself. Review
the scrum master’s responsibilities and matching characteristics in Table 6-3.

Table 6-3 Characteristics of a Good Scrum Master

Responsibility A Good Scrum Master . . .

Upholds scrum values and
practices.

Is an expert on scrum processes.

Is passionate about agile techniques.
Removes roadblocks and
prevents disruptions.

Has organizational clout and can resolve problems
quickly.

Is articulate, diplomatic, and professional.

Is a good communicator and a good listener.

Is firm about the development team’s need to focus
only on the project and the current sprint.

Fosters close cooperation
between external stake-
holders and the scrum
team.

Looks at the needs of the project as a whole.

Avoids cliques and helps break down group silos.

Facilitates consensus
building.

Understands techniques to help groups reach
agreements.

Is a servant-leader. Does not need or want to be in charge or be the
boss.

Ensures that all members of the development team
have the information they need to do the job, use
their tools, and track progress.

Truly desires to help the scrum team.

The members of the scrum team — the development team, the product
owner, and the scrum master — work together on the project every day.

As I mentioned earlier in the chapter, the scrum team plus stakeholders make
up the project team. The stakeholders sometimes have less active participa-
tion than the scrum team members, but still can have considerable impact
and provide a great deal of value to a project.

11_9781118026243-ch06.indd 9311_9781118026243-ch06.indd 93 3/30/12 3:38 PM3/30/12 3:38 PM

110 Part III: Working in Agile

Planning in Agile
Planning happens at a number of points in an agile project. A great way to
look at the planning activities in agile projects is with the Roadmap to Value.
Figure 7-1 shows the roadmap as a whole.

Figure 7-1:
Planning

in agile
with the

Roadmap to
Value.

 St
ag

e
1:

VI
SI

ON
De

sc
rip

tio
n:

 T
he

 g
oa

ls
fo

r t
he

 p
ro

du
ct

an
d

its
 a

lig
nm

en
t w

ith
 th

e
co

m
pa

ny
’s

st
ra

te
gy

Ow
ne

r:
Pr

od
uc

t O
w

ne
r

Fr
eq

ue
nc

y:
At

 le
as

t a
nn

ua
lly

St
ag

e
5:

DA
ILY

 S
CR

UM
De

sc
rip

tio
n:

 To
 e

st
ab

lis
h

an
d

co
or

di
na

te
pr

io
rit

ie
s o

f t
he

 d
ay

Ow
ne

r:
De

ve
lo

pm
en

t T
ea

m
Fr

eq
ue

nc
y:

Da
ily

St
ag

e
2:

PR
OD

UC
T

RO
AD

M
AP

De
sc

rip
tio

n:
 H

ol
ist

ic
 vi

ew
 o

f p
ro

du
ct

fe
at

ur
es

 th
at

 c
re

at
e

th
e

pr
od

uc
t v

isi
on

Ow
ne

r:
Pr

od
uc

t O
w

ne
r

Fr
eq

ue
nc

y:
At

 le
as

t b
ia

nn
ua

lly

St
ag

e
3:

RE
LE

AS
E

PL
AN

NI
NG

Hi
gh

es
t P

rio
rit

y
Fe

at
ur

es
 La

un
ch

JA
N

FE
B

M
AR

 A
PR

 M
AY

 J
UN

 J
UL

(S
ta

ge
s 1

-3
 a

re
 b

es
t p

ra
ct

ic
es

 o
ut

sid
e

of
 c

or
e

Sc
ru

m
)

Hi
gh

 P
rio

rit
y

Fe
at

ur
es

 La
un

ch
De

sc
rip

tio
n:

 R
el

ea
se

 ti
m

in
g

fo
r

sp
ec

ifi
c

pr
od

uc
t f

un
ct

io
na

lit
y

Ow
ne

r:
Pr

od
uc

t O
w

ne
r

Fr
eq

ue
nc

y:
At

 le
as

t q
ua

rte
rly

Re
le

as
e

Pr
od

uc
t

[P
er

 th
e

Re
le

as
e

Pl
an

]

St
ag

e
7:

SP
RI

NT
 R

ET
RO

SP
EC

TI
VE

De
sc

rip
tio

n:
 Te

am
 re

fin
em

en
t o

f
en

vir
on

m
en

t a
nd

 p
ro

ce
ss

es
 to

op
tim

ize
 e

ffi
ci

en
cy

Ow
ne

r:
Sc

ru
m

 Te
am

Fr
eq

ue
nc

y:
At

 th
e

en
d

of
 e

ac
h

sp
rin

t

1.E
xp

ec
te

d
2.M

or
e

co
m

pl
ic

at
ed

3.L
es

s
co

m
pl

ic
at

ed

4.N
ot

pa
rti

ci
pa

tin
g

5.
Ly

in
g

6.
Fil

in
g

fa
st

St
ag

e
6:

SP
RI

NT
 R

EV
IE

W
De

sc
rip

tio
n:

 D
em

on
st

ra
tio

n
of

w
or

kin
g

pr
od

uc
t

Ow
ne

r:
Pr

od
uc

t O
w

ne
r a

nd
 D

ev
el

op
m

en
t T

ea
m

Fr
eq

ue
nc

y:
At

 th
e

en
d

of
 e

ac
h

sp
rin

t

De
sc

rip
tio

n:
 E

st
ab

lis
h

sp
ec

ifi
c

ite
ra

tio
n

go
al

s a
nd

 ta
sk

s
Ow

ne
r:

Pr
od

uc
t O

w
ne

r a
nd

 D
ev

el
op

m
en

t T
ea

m
Fr

eq
ue

nc
y:

At
 th

e
st

ar
t o

f e
ac

h
sp

rin
t

St
ag

e
4:

SP
RI

NT
 P

LA
NN

IN
G

Pr
ep

ar
at

io
n

Ex
ec

ut
io

n

Sprint

24
 h

ou
rs

1 -
 4

W
ee

ks

13_9781118026243-ch07.indd 11013_9781118026243-ch07.indd 110 3/30/12 3:38 PM3/30/12 3:38 PM

112 Part III: Working in Agile

 The various teams on agile projects — the development team, the scrum
team, and the project team — have different roles and responsibilities, as you
see throughout this chapter and the rest of the book. Figure 7-2 shows how
these teams fit together.

Figure 7-2:
Teams in

agile.

Project Team

Stakeholders

Scrum Team

Development
Team

7 People +/– 2

Product Owner Scrum Master

Planning as necessary
During each stage in an agile project, you plan only as much as you need to
plan. In the early stages of your project, you plan widely and holistically to
create a broad outline of how the product will shape up over time. In later
stages, you narrow your planning and add more details to ensure success in
the immediate development effort.

Planning broadly at first and in detail later, when necessary, prevents you
from wasting time on planning lower-priority product requirements that may
never be implemented. This model also lets you add high-value requirements
during the project without disrupting the development flow.

The more just-in-time your detailed planning is, the more efficient your plan-
ning process becomes.

 Some studies show customers rarely or never use 64 percent of the features
in an application. In the first few development cycles of an agile project, you
complete features that are high priority and that people will use. Typically,
you release those groups of features as early as possible.

13_9781118026243-ch07.indd 11213_9781118026243-ch07.indd 112 3/30/12 3:38 PM3/30/12 3:38 PM

114 Part III: Working in Agile

mobile banking application. What company strategies does a mobile banking
application support? How does the application support the company’s strate-
gies? Your vision statement clearly and concisely links the product to your
business strategy.

Figure 7-3 shows how the vision statement — Stage 1 on the Roadmap to
Value — fits with the rest of the stages and activities in an agile project.

Figure 7-3:
The product
vision state-

ment as
part of the

Roadmap to
Value.

Stage 1: VISION
Description: The goals for the product
and its alignment with the company’s
strategy
Owner: Product Owner
Frequency: At least annually

The product owner is responsible for knowing about the product, its goals,
and its requirements throughout the project. For those reasons, the prod-
uct owner creates the vision statement, although other people may have
input. After the vision statement is complete, it becomes a guiding light, the
“what we are trying to achieve” statement that the development team, scrum
master, and stakeholders refer to throughout the project.

When creating a product vision statement, follow these four steps:

 1. Develop the product objective.

 2. Create a draft vision statement.

 3. Validate the vision statement with product and project stakeholders.
Revise the vision statement based on feedback.

 4. Finalize the vision statement.

The look of a vision statement follows no hard-and-fast rules. However,
anyone involved with the project, from the development team to the CEO,
should be able to understand the statement. The vision statement should be
internally focused, clear, nontechnical, and as brief as possible. The vision
statement should also be explicit and avoid marketing fluff.

Step 1: Developing the product objective
To write your vision statement, you must understand and be able to commu-
nicate the product’s objective. You need to identify the following:

13_9781118026243-ch07.indd 11413_9781118026243-ch07.indd 114 3/30/12 3:38 PM3/30/12 3:38 PM

116 Part III: Working in Agile

Figure 7-4:
Expansion
of Moore’s

template
for a vision
statement.

Vision Statement for Product:

For:
who:
the:
is a:
that:
Unlike:
our product:

(Target Customer)
(needs)

(product name)
(product category)

(product benefit, reason to buy)
(competitors)

(differentiation/value proposition)

 One way to make your product vision statement more compelling is to write
it in the present tense, as if the product already exists. Using present tense
helps readers imagine the product in use.

Using my expansion of Moore’s template, a vision statement for a mobile
banking application might look like the following:

For XYZ Bank customers

who want access to online banking capability while on the go,

the MyXYZ mobile banking application by XYZ Bank

is a mobile application that can be downloaded and used on smart-
phones and tablets

that allows bank customers to conduct secure, on-demand banking, 24
hours a day.

Unlike traditional banking at a branch or online banking from your home
or office computer,

our product allows users immediate 24-hour access to their financial
accounts wherever they have mobile carrier service.

Platinum Edge addition: This supports our company strategy to pro-
vide quick, convenient banking services, anytime, anywhere.

As you can see, a vision statement identifies a future state for the product
when the product reaches completion. The vision focuses on the conditions
that should exist when the product is complete.

 Avoid generalizations in your vision statement such as “make customers
happy” or “sell more products.” Also watch out for too much technological
specificity, such as “using release 9.x of Java, create a program with four mod-
ules that. . . .” At this early stage, defining specific technologies might limit you
later.

13_9781118026243-ch07.indd 11613_9781118026243-ch07.indd 116 3/30/12 3:38 PM3/30/12 3:38 PM

119 Chapter 7: Defining the Product Vision and Product Roadmap

Figure 7-5:
The product
roadmap as

part of the
Roadmap to

Value.

Stage 2: PRODUCT ROADMAP
Description: Holistic view of product
features that create the product vision
Owner: Product Owner
Frequency: At least biannually

As he or she does with the product vision statement, the product owner cre-
ates the product roadmap, with help from the development team. The devel-
opment team participates to a greater degree than it did during the creation
of the vision statement.

 Keep in mind that you will refine requirements and effort estimates through-
out the project. In the product roadmap phase, it is okay for your require-
ments, estimates, and timeframes to be at a very high level.

To create your product roadmap, you

 1. Identify product requirements and add them to the roadmap.

 2. Arrange the product requirements into logical groups.

 3. Estimate requirement effort at a high level and prioritize the product’s
requirements.

 4. Envision high-level time frames for the groups on the roadmap.

Because priorities can change, expect to update your product roadmap through-
out the project. I like to update the product roadmap at least twice a year.

 Your product roadmap can be as simple as sticky notes arranged on a white
board — which makes updates as easy as moving a sticky note from one sec-
tion of the white board to another.

You use the product roadmap to plan releases — Stage 3 in the Roadmap to
Value. Releases are groups of usable product functionality that you release to
customers to gather real-world feedback and to generate return on investment.

The following section goes through the steps to create a product roadmap in
detail.

Step 1: Identifying product requirements
The first step in creating a product roadmap is to identify, or define, the dif-
ferent requirements for your product.

13_9781118026243-ch07.indd 11913_9781118026243-ch07.indd 119 3/30/12 3:38 PM3/30/12 3:38 PM

122 Part III: Working in Agile

Figure 7-6:
Features

grouped by
themes.

Common activities

Authentication and
access to my accounts. Pay bills. Order checks. Order a copy of

a statement.

Put a stop on a check
or range of checks.

Change password.

Open an account.View balance. Transfer money
between accounts.

View pending
transactions.

View bills.

View a statement.

Find a branch/ATM
machine.

Call customer
service.

Reduction in call volume

Figure 7-7:
Require-

ment
categories
on a white

board.

View balances Pay bills View/Order
Statements

Authentication and

access to my accounts View bills View a statement

View balances Pay bills Order a copy of a
statement

13_9781118026243-ch07.indd 12213_9781118026243-ch07.indd 122 3/30/12 3:38 PM3/30/12 3:38 PM

125 Chapter 7: Defining the Product Vision and Product Roadmap

 ✓ A requirement with a low value and high effort will have a lower relative
priority. For example, if the value is 2 and the effort is 89, the relative
priority is 0.0224.

 ✓ This formula usually produces fractional results. If you want, you can
round those to the nearest whole number.

 Relative priority is only a tool to help the product owner make decisions and
prioritize requirements. It isn’t a mathematical universal that you must follow.
Make sure your tools help, rather than hinder.

Note the relative priority for each requirement. From here, you can review
your requirements simultaneously and prioritize them.

Prioritizing requirements
To determine the overall priority for your requirements, answer the following
questions:

 ✓ What is the relative priority of the requirement?

 ✓ What are the prerequisites for any requirement?

 ✓ What set of requirements belong together and will constitute a solid
release?

Using the answers to these questions, you will be able to place the highest-pri-
ority requirements first in the product roadmap. When you have finished pri-
oritizing your requirements, you will have something that looks like Figure 7-8.

Figure 7-8:
Product

roadmap
with

prioritized
require-

ments.

My XYZ
Product Roadmap

Mar.

Transfer
money

View
balances

Contact
bank

Find
ATM

Order
checks

POSSIBLE
RELEASE 1

Pay bills

Edit
Profile

Information

Open/Close
accountCall

Customer
Service

Apr. May June Jan. Feb. Mar. Apr.July Aug. Sept. Oct. Nov. Dec.

2010 2011

Your prioritized list of user stories is called a product backlog. Your product
backlog is an important agile document, or in agile terms, an artifact. You will
use this backlog throughout your entire project.

With a product backlog in hand, you can start adding target releases to your
product roadmap.

13_9781118026243-ch07.indd 12513_9781118026243-ch07.indd 125 3/30/12 3:38 PM3/30/12 3:38 PM

129 Chapter 8: Planning Releases and Sprints

Figure 8-1:
Card-based

user story
example.

Title
As
I want to
so that

 Transfer money between accounts

Carol,

 review fund levels in my accounts
 and transfer funds between accounts
 I can complete the transfer and see the
 new balances in the relevant accounts.

Value Author
Jennifer

Estimate

Title
As
I want to
so that

 <personal/user>

 <action>

 <benefit>

Value Author Estimate

The product owner gathers and manages the user stories. However, the
development team and other stakeholders also will be involved in creating
and decomposing user stories.

 It’s important to note that user stories aren’t the only way to describe product
requirements. You could simply make a list of requirements without any given
structure. However, because user stories include a lot of useful information in
a simple, compact format, I find them to be very effective at conveying exactly
what a requirement needs to do.

The big benefit of the user story format is when the development team starts
to create and test requirements. The development team members know
exactly whom they are creating the requirement for, what the requirement
should do, and how to double-check that the requirement satisfies the inten-
tion of the requirement.

I use user stories as examples of requirements throughout this chapter and
throughout the book. Keep in mind that anything I describe that you can do
with user stories, you can do with more generically expressed requirements.

Steps to create a user story
When creating a user story, follow these steps:

 1. Identify the project stakeholders.

 2. Identify who will use the product.

 3. Working with the stakeholders, write down the requirements that the
product will need and use the format I describe earlier in this chapter
to create your user stories.

Find out how to follow these three steps in the following sections.

 Agile is iterative. Don’t spend a ton of time trying to identify every single
requirement your product might have. You can always add requirements later
in the project. The best changes often come at the end of a project, when you
know the most about the product and the customers.

14_9781118026243-ch08.indd 12914_9781118026243-ch08.indd 129 3/30/12 3:39 PM3/30/12 3:39 PM

132 Part III: Working in Agile

Have the stakeholders write down as many requirements as they can think of,
using the user story format. One user story for the project and personas from
the preceding sections might be

 ✓ Front side of card:

 • Title: See bank account balance.

 • As a busy, tech-savvy, on-the-go customer of XYZ Bank (Jason)

 • I want to see my checking account balance on my smartphone

 • so that I can see how much money I have in my checking account

 ✓ Back side of card:

 • When I sign into the XYZ Bank mobile application, my checking
account balance appears at the top of the page.

 • When I sign into the XYZ Bank mobile application after making a
purchase or a deposit, my checking account balance reflects that
purchase or deposit.

You can see sample user stories in card format in Figure 8-2.

Figure 8-2:
Sample user

stories.

Title
As
I want to
so that

 Transfer money between accounts

Carol,

 transfer funds between accounts

 I can complete the transfer and see the
 new balances in the relevant accounts.

Value Author
Jennifer

Caroline

Estimate

Title
As
I want to
so that

 Put a stop on a check

Nick,

 enter a check number to put a stop on
 a lost or stolen check
 I can see a confirmation that the check
 has been stopped.

Value Author Estimate

 Be sure to continuously add new user stories to your product backlog.
Keeping your product backlog up-to-date will help you have the highest prior-
ity user stories when it is time to plan your sprint.

Throughout an agile project, you will create new user stories. You will also
take existing large requirements and decompose them until they are manage-
able enough to work on during a sprint.

14_9781118026243-ch08.indd 13214_9781118026243-ch08.indd 132 3/30/12 3:39 PM3/30/12 3:39 PM

133 Chapter 8: Planning Releases and Sprints

Breaking down requirements
You will refine requirements many times throughout an agile project. For
example:

 ✓ When you create the product roadmap (see Chapter 7), you create
features, a capability your customers will have after you develop the
feature that they don’t have prior, as well as themes, which are logical
groups of features. Although features are intentionally large, at Platinum
Edge, we require features at the product roadmap level to be no larger
than 144 story points.

 ✓ When you plan releases, you break down the features into more concise
user stories. User stories at the release plan level can be either epics,
very large user stories with multiple actions, or individual user stories
that will contain a single action. For our clients, user stories at the
release plan level should be no larger than 34 story points. You find out
more about releases later in this chapter.

 ✓ When you plan sprints, you can break down user stories even further.
You also identify individual tasks associated with each user story in the
sprint. For our clients, user stories at the sprint level should be no larger
than eight story points.

 A story point is a relative score to represent the value and effort for each
requirement. Scrum teams often use numbers in the Fibonacci sequence —
where each number after the first two is the sum of the prior two numbers — for
their story points. You can find out more about story points and the Fibonacci
sequence in Chapter 7.

To decompose requirements, you will want to think about how to break the
requirement down into individual actions. Table 8-1 shows a requirement
decomposed from the theme level down to the user story level.

Table 8-1 Decomposing a Requirement

Requirement Level Requirement

Theme See account data with a mobile application.
Features See account balances.

See a list of recent withdrawals or purchases.

See a list of recent deposits.

See my upcoming automatic bill payments.

See my account alerts.
(continued)

14_9781118026243-ch08.indd 13314_9781118026243-ch08.indd 133 3/30/12 3:39 PM3/30/12 3:39 PM

134 Part III: Working in Agile

Table 8-1 (continued)

Requirement Level Requirement

Epic User Stories —
decomposed from “see
account balances”

See checking account balance.

See savings account balance.

See investment account balance.

See retirement account balance.
User Stories — decom-
posed from “see check-
ing account balance”

Log into mobile account.

Securely log into mobile account.

See a list of my accounts.

Select and view my checking account.

See account balance changes after withdrawals.

See account balance changes after purchases.

See day’s end account balance.

See available account balance.

See mobile application navigation items.

Change account view.

Log out of mobile application.

Estimation poker
As you refine your requirements, you need to refine your estimates as well.
It’s time to have some fun!

One of the most popular ways of estimating user stories is by playing estima-
tion poker, sometimes called Planning Poker, a game to determine user story
size and to build consensus with the development team members.

 The scrum master can help coordinate estimation, and the product owner can
provide information about features, but the development team is responsible
for estimating the level of effort required for the user stories. After all, the
development team has to do the work to create the features that those stories
describe.

14_9781118026243-ch08.indd 13414_9781118026243-ch08.indd 134 3/30/12 3:39 PM3/30/12 3:39 PM

135 Chapter 8: Planning Releases and Sprints

To play estimation poker, you need a deck of cards like the one in Figure 8-3.
You can get them online at my website (www.platinumedge.com/estima-
tionpoker), or you can make your own with index cards and markers. The
numbers on the cards are from the Fibonacci sequence.

Figure 8-3:
A deck of

estimation
poker cards.

144

144
144

89

89
89

55

55
55

34

34
34

21

21
21

13

13
13

8

8
8

5

5
5

3

3
3

1

1
1

0

0
0

?

?

?

Only the development team plays estimation poker. The scrum master and
product owner don’t get a deck and don’t provide estimates. However, the
scrum master can act as a facilitator, and the product owner will read the
user stories and provide details on user stories as needed.

User stories and the INVEST approach
You may be asking, just how decomposed does
a user story have to be? Bill Wake, in his blog at
XP123.com describes the INVEST approach to
ensure quality in user stories. I like his method
so much I include it here.

Using the INVEST approach, user stories
should be

 ✓ Independent: To the extent possible, a story
should need no other stories to implement
the feature that the story describes.

 ✓ Negotiable: Not overly detailed. There
is room for discussion and expansion of
details.

 ✓ Valuable: The story demonstrates product
value to the customer. The story describes
features, not a single-thread start-to-finish

user task. The story is in the user’s lan-
guage and is easy to explain. The people
using the product or system can under-
stand the story.

 ✓ Estimable: The story is descriptive, accu-
rate, and concise, so the developers can
generally estimate the work necessary to
create the functionality in the user story.

 ✓ Small: It is easier to plan and accurately
estimate small user stories. A good rule
of thumb is that a user story should not
take one person on the development team
longer than half of a sprint to complete.

 ✓ Testable: You can easily validate the user
story, and the results are definitive.

14_9781118026243-ch08.indd 13514_9781118026243-ch08.indd 135 3/30/12 3:39 PM3/30/12 3:39 PM

138 Part III: Working in Agile

members, having each development team member categorize a group of
stories, this step can go quickly!

Figure 8-4:
Story sizes

as T-shirt
sizes

and their
Fibonacci
numbers.

SIZE POINTS

XtraSmall (XS) 1 pt

Small (S) 2 pts

Medium (M) 3 pts

Large (L) 5 pts

XtraLarge (XL) 8 pts

 3. Taking another 60 minutes, maximum, for each 100 stories, the devel-
opment team reviews and adjusts the placement of the user stories.

 The entire development team must agree on the placement of the user
stories into size categories.

 4. The product owner reviews the categorization.

 5. When the product owner’s expected estimate and the team’s actual esti-
mate differ by more than one story size, they discuss that user story.

 The development team may or may not decide to adjust the story size.

 Note that after the product owner and the team discuss clarifications,
the team has final say on the user story size.

User stories in the same size category will have the same user story score.
You can play a round of estimation poker to double-check a few, but you won’t
need to waste time in unnecessary discussion for every single user story.

 You can use the estimating and prioritizing techniques in this chapter for
requirements at any level, from themes and features down to single user stories.

Release Planning
A release, in agile terms, is a group of usable product features that you
release to production. A release does not need to include all the functional-
ity outlined in the roadmap but should include at least the minimal market-
able features, the smallest group of product features that you can effectively
deploy and promote in the marketplace. Your early releases will exclude
many of the medium- and low-priority requirements you created during the
product roadmap stage.

14_9781118026243-ch08.indd 13814_9781118026243-ch08.indd 138 3/30/12 3:39 PM3/30/12 3:39 PM

139 Chapter 8: Planning Releases and Sprints

When planning a release, you establish the next set of minimal marketable
features and identify an imminent product launch date around which the
team can mobilize. As when creating the vision statement and the product
roadmap, the product owner is responsible for creating the release goal
and establishing the release date. However, the development team, with the
scrum master’s facilitation, contributes to the process.

Release planning is Stage 3 in the Roadmap to Value (refer to Figure 7-1 in
Chapter 7 to see the roadmap as a whole). Figure 8-5 shows how release plan-
ning fits into an agile project.

Figure 8-5:
Release

planning as
part of the

Roadmap to
Value.

Stage 3: RELEASE PLANNING
Highest Priority
Features Launch

JAN FEB MAR APR MAY JUN JUL
(Stages 1-3 are best practices outside of core Scrum)

High Priority
Features Launch

Description: Release timing for
specific product functionality
Owner: Product Owner
Frequency: At least quarterly

Release planning involves completing two key activities:

 ✓ Revising the product backlog: In Chapter 7, I told you that the product
backlog is a comprehensive list of all the user stories you currently
know for your project, whether or not they belong in the current release.
Keep in mind that your list of user stories will probably change through-
out the project.

 ✓ Release plan: The release goal, release target date, and prioritization of
product backlog items that support the release goal. The release plan
provides a midrange goal that the team can accomplish.

 Don’t create a new, separate backlog during release planning. The task is
unnecessary and reduces the product owner’s flexibility. Prioritizing the
existing product backlog based on the release goal is sufficient and enables
the product owner to have the latest information when he or she commits to
scope during sprint planning.

The product backlog and release plan are some of the most important com-
munication channels between the product owner and the team. The following
sections describe how to complete a product backlog and a release plan.

Completing the product backlog
As Chapter 7 explains, the product roadmap contains themes, epic user sto-
ries, and some tentative release timelines. The requirements on your product
roadmap are the first version of your product backlog.

14_9781118026243-ch08.indd 13914_9781118026243-ch08.indd 139 3/30/12 3:39 PM3/30/12 3:39 PM

140 Part III: Working in Agile

The product backlog is the list of all user stories associated with the
project. The product owner is responsible for creating and maintaining the
product backlog by adding and prioritizing user stories. The scrum team
uses the backlog during release planning and throughout the project.

Figure 8-6 shows a sample product backlog. At a minimum, when creating
your product backlog, be sure to

 ✓ Include a description of your requirement.

 ✓ Order the user stories based on priority. You can find out how to deter-
mine priority in Chapter 7.

 ✓ Add the effort estimate.

Figure 8-6:
Product
backlog
sample.

As an Administrator, I want to link accounts to profiles,
so that customers can access new accounts.

Feature

Feature

Feature

Feature

Feature

Not started

Not started

Not started

Not started

Not started

5

3

1

2

8

121

ID Story Type Status Value

113

403

97

68

As a Customer, I want to view my account balances, so
that I know how much money is currently in each account.

As a Customer, I want to transfer money between my active
accounts, so that I can adjust each account’s balance.

As a Site Visitor, I want to contact the bank, so that I can
ask questions and raise issues.

As a Site Visitor, I want to find locations, so that I can use
bank services.

 In Chapter 2, I explain how documents for agile projects should be barely suffi-
cient, with only information that is absolutely necessary to create the product.
Keep your product backlog format simple and barely sufficient, and you will
save time on updating it throughout the project.

The scrum team refers to the product backlog as the main source for project
requirements. If a requirement exists, it is in the product backlog. The user
stories in your product backlog will change throughout the project in several
ways. For example, as the team completes user stories, you mark those sto-
ries as complete within the backlog. You also record any new user stories.
Additionally, you update the priority and effort scores of existing user stories
as needed.

The total number of story points in the product backlog — all user story
points added together — is your current product backlog estimate. This esti-
mate changes daily as user stories are completed and new user stories are
added. Discover more about using the product backlog estimate to predict
the project length and cost in Chapter 13.

14_9781118026243-ch08.indd 14014_9781118026243-ch08.indd 140 3/30/12 3:39 PM3/30/12 3:39 PM

142 Part III: Working in Agile

 Not all agile projects use release planning. Some scrum teams release func-
tionality for customer use with every sprint. The development team, product,
organization, customers, stakeholders, and technological complexity can all
help determine your approach to product releases.

The planned releases now go from a tentative plan to a more concrete goal.
Figure 8-7 represents a typical release plan.

Figure 8-7:
Sample
release

plan.

Release Goal: Enable customers to access, view, and transact against their active accounts.
Release Date: March 31, 2013

User Stories

US = User story

US US US
US US

US US US
US US

2 weeks 2 weeks 2 weeks 2 weeks

h

 Bear in mind the pen-pencil rule: You can commit to (write in pen) the plan
for the first release, but anything beyond the first release is tentative (written
in pencil). In other words, use just-in-time planning (see Chapter 7) for each
release. After all, things change, so why bother getting microscopic too early?

Sprint Planning
In agile projects, a sprint is a consistent iteration of time in which the devel-
opment team creates a specific group of product capabilities from start to
finish. At the end of each sprint, the product that the development team has
created should be working and ready to demonstrate.

Sprints should be the same length within a project. Keeping the sprint
lengths consistent helps you measure the development team’s performance
and plan better at each new sprint.

Sprints generally last one, two, three, or four weeks. Four weeks is the lon-
gest amount of time any sprint should last; longer iterations make changes
riskier, defeating the purpose of agile.

Each sprint includes the following:

 ✓ Sprint planning at the beginning of the sprint

 ✓ Daily scrum meetings

14_9781118026243-ch08.indd 14214_9781118026243-ch08.indd 142 3/30/12 3:39 PM3/30/12 3:39 PM

143 Chapter 8: Planning Releases and Sprints

 ✓ Development time — the bulk of the sprint

 ✓ A sprint review and a sprint retrospective at the end of the sprint

Discover more about daily scrums, sprint development, the sprint review,
and the sprint retrospective in Chapters 9 and 10. In this chapter, you find
out how to plan sprints.

Sprint planning is Stage 4 on the Roadmap to Value, as you can see in Figure
8-8. The entire scrum team — the product owner, the scrum master, and the
development team — works together to plan sprints.

Figure 8-8:
Sprint

planning as
part of the
Roadmap
to Value.

Description: Establish specific iteration
goals and tasks.
Owner: Product Owner and Development Team
Frequency: At the start of each sprint

Stage 4: SPRINT PLANNING

The sprint backlog
The sprint backlog is a list of user stories associated with the current sprint
and related tasks. When planning your sprint, you

 ✓ Establish goals for your sprint.
 ✓ Choose the user stories that support those goals.
 ✓ Break user stories into specific development tasks.
 ✓ Create a sprint backlog. The sprint backlog includes
 • The list of user stories within the sprint in order of priority.
 • The relative effort estimate for each user story.
 • The tasks necessary to develop each user story.
 • The effort, in hours, to complete each task.
 At the task level, you estimate the number of hours each task will

take to complete, instead of using story points. Since your sprint
has a specific length, and thus a set number of available working
hours, you can use the time each task takes to determine whether
the tasks will fit into your sprint.

 Each task should take one day or less for the development team to
complete.

 • A burndown chart, which shows the status of the work the develop-
ment team has completed.

14_9781118026243-ch08.indd 14314_9781118026243-ch08.indd 143 3/30/12 3:39 PM3/30/12 3:39 PM

145 Chapter 8: Planning Releases and Sprints

Figure 8-9:
Sprint back-
log example.

 M
y X

YZ
 M

ob
ile

 B
an

kin
g

- S
pr

in
t 1

Sp
rin

t d
at

es
: F

eb
ru

ar
y 4

 -
Fe

br
ua

ry
 15

Sp
rin

t g
oa

l
As

 a
 <

m
ob

ile
 b

an
kin

g
cu

st
om

er
>,

I w
an

t t
o

<l
og

 in
 to

 m
y a

cc
ou

nt
>

So
 I

ca
n

<v
ie

w
 m

y a
cc

ou
nt

 b
al

an
ce

s a
nd

 p
en

di
ng

tra
ns

ac
tio

ns
>.

Bu
rn

do
w

n
- B

as
ed

 o
n

Es
t H

ou
rs

 R
em

ai
ni

ng
Nu

m
be

r o
f w

or
kin

g
da

ys
Le

on
a

(3
5 h

rs
 w

k)
Jo

ey
 (3

5 h
rs

 w
k)

Bo
b

(3
5 h

rs
 w

k)
M

ar
ie

 (2
0 h

rs
 w

k)
Pa

bl
o

(3
5 h

rs
 w

k)
M

ad
iso

n
(3

5 h
rs

 w
k)

Fe
at

ur
e

Bu
rn

do
w

n
- B

as
ed

 o
n

Es
t H

ou
rs

 R
em

ai
ni

ng

Ta
sk

Us
er

 S
to

ry
 #1

: A
ut

he
nt

ic
at

e
an

d
Ac

ce
ss

 M
y A

cc
ou

nt
s

Cr
ea

te
 a

ut
he

nt
ic

at
io

n
sc

re
en

 fo
r u

se
rn

am
e

&
pa

ss
w

or
d

w
ith

 su
bm

it
bu

tto
n

Cr
ea

te
 e

rro
r s

cr
ee

n
fo

r u
se

r t
o

re
-e

nt
er

 c
re

de
nt

ia
ls

Cr
ea

te
 lo

gg
ed

 in
 sc

re
en

Us
in

g
au

th
en

tic
at

io
n

co
de

 fr
om

 o
nl

in
e

ba
nk

in
g

ap
pl

ic
at

io
n,

 d
ev

el
op

 lo
gi

n
co

de
 fo

r i
Ph

on
e

/ i
Pa

d
ap

pl
ic

at
io

n

Cr
ea

te
 c

al
ls

to
 d

at
ab

as
e

to
 ve

rif
y u

se
rn

am
e

&
pa

ss
w

or
d

Cr
ea

te
 a

ut
he

nt
ic

at
io

n
sc

re
en

 fo
r u

se
rn

am
e

&
pa

ss
w

or
d

w
ith

 su
bm

it
bu

tto
n

Cr
ea

te
 e

rro
r s

cr
ee

n
fo

r u
se

r t
o

re
-e

nt
er

 c
re

de
nt

ia
ls

Cr
ea

te
 lo

gg
ed

 in
 sc

re
en

Us
in

g
au

th
en

tic
at

io
n

co
de

 fr
om

 o
nl

in
e

ba
nk

in
g

ap
pl

ic
at

io
n,

 d
ev

el
op

lo
gi

n
co

de
 fo

r i
Ph

on
e

/ i
Pa

d
ap

pl
ic

at
io

n

Cr
ea

te
 c

al
ls

to
 d

at
ab

as
e

to
 ve

rif
y u

se
rn

am
e

&
pa

ss
w

or
d

1 3 1 2 1 3 3 2 2 2

3 4 16 24 24 8 8 16 4 4

8 4 16 24 24 8 8 16 4 4

8 4 16 24 24 8 8 16 4 4

0 4 16 8 8 8 8 16 4 4

0 4 16 4 4 8 8 4 4 4

0 4 16 0 0 0 0 0 0 0

0 0 16 0 0 0 0 0 0 0

0 0 16 0 0 0 0 0 0 0

0 0 12 0 0 0 0 0 0 0

0 0 12 0 0 0 0 0 0 0

Co
m

pl
et

ed
Co

m
pl

et
ed

In
 p

ro
gr

es
s

In
 p

ro
gr

es
s

Co
m

pl
et

ed

Co
m

pl
et

ed

Co
m

pl
et

ed

Co
m

pl
et

ed

Co
m

pl
et

ed

Co
m

pl
et

ed

M
ad

iso
n

M
ar

ie
Pa

bl
o

Le
on

a

Bo
b

Le
on

a

Le
on

a

Le
on

a

Le
on

a

Le
on

a

Pr
io

rit
y

St
at

us
Re

sp
on

sib
le

PO
Ap

pr
ov

ed
?

M
o 4

Bu
rn

do
w

n:
 E

st
 H

rs
 R

em
ai

ni
ng

40
0

35
0

36
0

32
0

28
0

24
0

20
0

16
0

12
0

80

0

30
0

25
0

20
0

15
0

10
0 50 0

1

Estimated Hrs Remaining

2
3

4
5

6
Da

ys
 in

 S
pr

in
t

Ac
tu

al
Sc

he
du

le

7
8

9
10

Tu 5
W 6

Th 7
F 8

M 11
T 12

W 13
Th 14

F 15

9 63 63 63 63 63 63 38
7 43

To
ta

l:
To

ta
l p

er
 d

ay
:

40

14_9781118026243-ch08.indd 14514_9781118026243-ch08.indd 145 3/30/12 3:39 PM3/30/12 3:39 PM

146 Part III: Working in Agile

Figure 8-10:
Sprint

planning
meeting to

sprint length
ratio.

If my sprint is
this long...

One week

Two weeks

Three weeks

Four weeks

Two hours

Four hours

Six hours

Eight hours

My sprint planning meeting
should last no more than...

Part 1: Setting goals and choosing user stories
In the first part of your sprint planning meeting, the product owner and
development team, with support from the scrum master, do the following:

 1. Discuss and set a sprint goal.

 2. Review the user stories from the product backlog that support the
sprint goal and revisit their relative estimates.

 3. Determine what the team can commit to in the current sprint.

At the beginning of your sprint planning meeting, the product owner and
the development team should determine a goal for the sprint. The sprint
goal should be an overall description supported by the highest-priority user
stories in the product backlog. A sample sprint goal for the mobile banking
application (refer to Chapter 7) might be

As a mobile banking customer, I want to log in to my account so I can
view my account balances and pending and prior transactions.

Using the sprint goal, you determine the user stories that belong in this
sprint. You also take another look at the estimates for those stories and make
changes to the estimates if you need to. For the mobile banking application
sample, the group of user stories for the sprint might include

 ✓ Log in and access my accounts.

 ✓ View account balances.

 ✓ View pending transactions.

 ✓ View prior transactions

All these would be high-priority user stories that support the sprint goal.

The second part of reviewing user stories is confirming that the effort esti-
mates for each user story look correct. Adjust the estimate if necessary. With
the product owner in the meeting, resolve any outstanding questions.

14_9781118026243-ch08.indd 14614_9781118026243-ch08.indd 146 3/30/12 3:39 PM3/30/12 3:39 PM

152 Part III: Working in Agile

Figure 9-1:
The sprint

and the
daily scrum

in the
Roadmap to

Value.

Stage 5: DAILY SCRUM
Description: To establish and coordinate
priorities of the day
Owner: Development Team
Frequency: Daily

24 hours

1 - 4 Weeks

Sp
rin

t

In the daily scrum meeting, each development team member makes the fol-
lowing three statements, which enable team coordination:

 ✓ Yesterday, I completed [state items completed].

 ✓ Today, I’m going to take on [state task].

 ✓ My impediments are [state impediments, if any].

 Other names you might hear for the daily scrum meeting are the daily huddle
or the daily standup meeting. Daily scrum, daily huddle, and daily standup all
mean the same thing.

One of the rules of scrum is that daily scrum meetings last 15 minutes or
less. Meetings that last longer eat into the development team’s day. You can
use props to keep daily scrum meetings quick. I start meetings by tossing
a squeaky burger-shaped dog toy — don’t worry; it’s clean — to a random
development team member. Each person makes their three statements and
then passes the squeaky toy to someone else. If people are long-winded, I
change the prop to a 500-page ream of copy paper, which weighs about five
pounds. Each person can talk for as long as he or she can hold the ream out
to one side. Either meetings will quickly become shorter, or development
team members will quickly build up their arm strength — in my experience,
it’s the former.

To keep daily scrums brief and effective, the scrum team can follow several
guidelines:

 ✓ Anyone may attend a daily scrum, but only the development team, the
scrum master, and the product owner may talk. Stakeholders can dis-
cuss questions with the scrum master or product owner afterward, but
stakeholders should not approach the development team.

 ✓ The focus is on immediate priorities. The scrum team should review
only completed tasks, tasks to be done, and roadblocks.

15_9781118026243-ch09.indd 15215_9781118026243-ch09.indd 152 3/30/12 3:39 PM3/30/12 3:39 PM

155 Chapter 9: Working Through the Day

Figure 9-2:
Sample

sprint
backlog.

 M
y X

YZ
 M

ob
ile

 B
an

kin
g

- S
pr

in
t 1

Sp
rin

t d
at

es
: F

eb
ru

ar
y 4

 -
Fe

br
ua

ry
 15

Sp
rin

t g
oa

l
As

 a
 <

m
ob

ile
 b

an
kin

g
cu

st
om

er
>,

I w
an

t t
o

<l
og

 in
 to

 m
y a

cc
ou

nt
>

So
 I

ca
n

<v
ie

w
 m

y a
cc

ou
nt

 b
al

an
ce

s a
nd

 p
en

di
ng

 tr
an

sa
ct

io
ns

>.

Bu
rn

do
w

n
- B

as
ed

 o
n

Es
t H

ou
rs

 R
em

ai
ni

ng
Nu

m
be

r o
f w

or
kin

g
da

ys
Le

on
a

(3
5 h

rs
 w

k)
Jo

ey
 (3

5 h
rs

 w
k)

Bo
b

(3
5 h

rs
 w

k)
M

ar
ie

 (2
0 h

rs
 w

k)
Pa

bl
o

(3
5 h

rs
 w

k)
M

ad
iso

n
(3

5 h
rs

 w
k)

Fe
at

ur
e

Bu
rn

do
w

n
- B

as
ed

 o
n

Es
t H

ou
rs

 R
em

ai
ni

ng

Ta
sk

Us
er

 S
to

ry
 #1

: A
ut

he
nt

ic
at

e
an

d
Ac

ce
ss

 M
y A

cc
ou

nt
s

Cr
ea

te
 a

ut
he

nt
ic

at
io

n
sc

re
en

 fo
r u

se
rn

am
e

&
pa

ss
w

or
d

w
ith

 su
bm

it
bu

tto
n

Cr
ea

te
 e

rro
r s

cr
ee

n
fo

r u
se

r t
o

re
-e

nt
er

 c
re

de
nt

ia
ls

Cr
ea

te
 lo

gg
ed

 in
 sc

re
en

Us
in

g
au

th
en

tic
at

io
n

co
de

 fr
om

 o
nl

in
e

ba
nk

in
g

ap
pl

ic
at

io
n,

 d
ev

el
op

lo
gi

n
co

de
 fo

r i
Ph

on
e

/ i
Pa

d
ap

pl
ic

at
io

n
Cr

ea
te

 c
al

ls
to

 d
at

ab
as

e
to

 ve
rif

y u
se

r n
am

e
&

pa
ss

w
or

d
Cr

ea
te

 a
ut

he
nt

ic
at

io
n

sc
re

en
 fo

r u
se

rn
am

e
&

pa
ss

w
or

d
w

ith
su

bm
it

bu
tto

n
Cr

ea
te

 e
rro

r s
cr

ee
n

fo
r u

se
r t

o
re

-e
nt

er
 c

re
de

nt
ia

ls
Cr

ea
te

 lo
gg

ed
 in

 sc
re

en
Us

in
g

au
th

en
tic

at
io

n
co

de
 fr

om
 o

nl
in

e
ba

nk
in

g
ap

pl
ic

at
io

n,
 d

ev
el

op
 lo

gi
n

co
de

 fo
r i

Ph
on

e/
iP

ad
 a

pp
lic

at
io

n
Cr

ea
te

 c
al

ls
to

 d
at

ab
as

e
to

 ve
rif

y u
se

rn
am

e
&

pa
ss

w
or

d

1 3 1 2 1 3 3 2 2 2

3 0 2 2 0 8 8 2 4 4

8 4 16 2 0 0 0 0 4 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Co
m

pl
et

ed
Co

m
pl

et
ed

In
 p

ro
gr

es
s

In
 p

ro
gr

es
s

Co
m

pl
et

ed
Co

m
pl

et
ed

Co
m

pl
et

ed
Co

m
pl

et
ed

Co
m

pl
et

ed
Co

m
pl

et
ed

M
ad

iso
n

M
ar

ie
Pa

bl
o

Le
on

a
Bo

b

Le
on

a
Bo

b
M

ad
iso

n

Le
on

a
M

ar
ie

Pr
io

rit
y

St
at

us
Re

sp
on

sib
le

PO
Ap

pr
ov

ed
?

Bu
rn

do
w

n:
 E

st
 H

rs
 R

em
ai

ni
ng

45
0

40
0

38
7

34
4

30
1

25
8

21
5

17
2

12
9

86

35
0

30
0

25
0

20
0

15
0

10
0 50 0

1

Estimated Hrs Remaining

2
3

4
5

6
Da

ys
 in

 S
pr

in
t

Ac
tu

al
Sc

he
du

le

7
8

9

Tu 5
W 6

Th 7
F 8

M 11
T 12

W 13
Th 14

F 15

9 63 63 63 63 63 63 38
7 43

To
ta

l:
To

ta
l p

er
 d

ay
:

43

8 4 7 6 8 8 8 6 4 4

M 4

15_9781118026243-ch09.indd 15515_9781118026243-ch09.indd 155 3/30/12 3:39 PM3/30/12 3:39 PM

156 Part III: Working in Agile

Figure 9-3:
Burndown

chart.

Sprint 1 burndown; Est. hrs. remaining

350

300

250

200

150

100

50

0
1 2 3 4 5 6 7 8 9 10 11 12 13

Es
tim

at
ed

 H
rs

 R
em

ai
ni

ng
Days in Sprint

Actual
Schedule

Some sprint burndown charts also show the outstanding story points on a
second vertical axis that is plotted against the same horizontal time axis as
hours of work remaining.

A burndown chart enables anyone, at a glance, to see the status of the sprint.
Progress is clear. By comparing the realistic number of hours available to the
actual work remaining, you can find out daily whether the effort is going as
planned, is in better shape than expected, or is in trouble. That information
helps you determine whether the development team is likely to accomplish
the targeted number of user stories and helps you make informed decisions
early in the sprint.

 You can create a sprint backlog using a spreadsheet and charting program
like Microsoft Excel. You can also download my sprint backlog template,
which includes a burndown chart, from www.dummies.com/go/agile
projectmanagementfd.

Figure 9-4 shows samples of burndown charts for sprints in different situa-
tions. Looking at these charts, you can tell how the work is progressing:

 1. Expected: This chart shows a normal sprint pattern. The remaining
work hours rise and fall as the development team completes tasks, fer-
rets out details, and identifies tactical work it may not have initially con-
sidered. Although work occasionally increases, it is manageable, and the
team mobilizes to complete all user stories by the end of the sprint.

 2. More complicated: In this sprint, the work increased beyond the point
in which the development team felt it could accomplish everything.
The team identified this issue early, worked with the product owner to
remove some user stories, and still achieved the sprint goal. The key
to scope changes within a sprint is that they are always initiated by the
development team — no one else.

15_9781118026243-ch09.indd 15615_9781118026243-ch09.indd 156 3/30/12 3:39 PM3/30/12 3:39 PM

157 Chapter 9: Working Through the Day

Figure 9-4:
Profiles of
burndown

charts.

1. Expected 2. More complicated 3. Less complicated

4. Not participating 5. Lying 6. Failing fast

 3. Less complicated: In this sprint, the development team completed some
critical user stories faster than anticipated and worked with the product
owner to identify additional user stories it could add to the sprint.

 4. Not participating: A straight line in a burndown means that the team
didn’t update the burndown or made zero progress that day. Either case
is a red flag for future problems.

 Just like on a heartbeat graph, a horizontal straight line on a sprint burn-
down chart is never a good thing.

 5. Lying (or conforming): This burndown pattern is common for new
agile development teams that might be used to reporting the hours that
management expects, instead of the time the work really takes, and
consequently tend to adjust their work estimates to the exact number of
remaining hours. This pattern often reflects a fear-based environment,
where the managers lead by intimidation.

 6. Failing fast: One of the strongest benefits of agile is the immediate proof
of progress, or lack thereof. This pattern shows an example of a team
that wasn’t participating or progressing. Halfway through the sprint,
the product owners cut their losses and killed the sprint. Only product
owners can end a sprint early.

The sprint backlog helps you track progress throughout each sprint. You
can also refer to earlier sprint backlogs to compare progress from sprint
to sprint. You will make changes to your process in each sprint (read more
about the concept of inspect and adapt in Chapter 7). Constantly inspect
your work and adapt to make it better. Hold on to those old sprint backlogs.
Find out more about inspect and adapt in Chapter 10.

Another way to keep track of your sprint is by using a task board. Read on to
find out how to create and use a task board.

15_9781118026243-ch09.indd 15715_9781118026243-ch09.indd 157 3/30/12 3:39 PM3/30/12 3:39 PM

159 Chapter 9: Working Through the Day

Figure 9-5:
Sample task

board.

To Do In Progress Verify Done

Test the...
 6

Code the...
DC 4

Test the...
SC 8

Code the...
 4

Test the...
 6Test the...

 6Test the...
 6Test the...

SC 6

Code the...
 9

Test the...
 8

Code the...
 2

Code the...
 8

Test the...
 8

Test the...
 4

 The task board is a lot like a kanban board. Kanban is a Japanese term that
means visual signal. (For more on kanban boards, see Chapter 4.) Toyota cre-
ated these boards as part of its lean manufacturing process.

Day-to-day work on an agile project involves more than just planning and
tracking progress. In the next section, you see what most of your day’s work
will include, whether you are a member of the development team, a product
owner, or a scrum master.

 Some development teams report status only with a task board and ask the scrum
master to convert status into the sprint backlog. This process helps the scrum
master see trends and potential issues.

Agile Roles Within the Sprint
Each member of a scrum team has specific daily roles and responsibilities
during the sprint. The day’s focus for the development team is producing
shippable functionality. For the product owner, the focus is on preparing the
product backlog for future sprints while supporting the development team
with real-time clarifications. The scrum master is the agile coach and maxi-
mizes the development team’s productivity by removing roadblocks and pro-
tecting the development team from external distractions.

Following are descriptions of the tasks each member of the scrum team per-
forms during the sprint. If you’re a member of the development team, you
also perform the following tasks during the sprint.

 ✓ Select the tasks of highest need and complete them as quickly as possible.

 ✓ Request clarification from the product owner when you are unclear
about a user story.

15_9781118026243-ch09.indd 15915_9781118026243-ch09.indd 159 3/30/12 3:39 PM3/30/12 3:39 PM

164 Part III: Working in Agile

The development team can conduct peer reviews during development.
Collocation helps make this easy — you can turn to the person next to you
and ask him or her to take a quick look at what you just completed. The
development team can also set aside time during the day specifically for
reviewing code. Self-managing teams should decide what works best for their
specific team.

Product owner review
When a user story has been developed and tested, the development team
moves the stories to the Accept column on the task board. The product
owner then reviews the functionality and verifies that it meets the goals of
the user story, per the user story’s acceptance criteria. The product owner
verifies user stories throughout each day.

As discussed in Chapter 8, the back side of each user story card has verifica-
tion steps. These steps allow the product owner to review and confirm that
the code works and supports the user story. Figure 9-6 shows a sample user
story card’s verification steps.

Figure 9-6:
User story

verification.

When I do this: This happens:
When I go to the accounts page

When I select transfer funds

When I submit transfer requests

I am able to see my active account
balance.
I am able to select “Transfer to
Account” and amount.
I get an account confirmation
funds were transferred.

:

:

:

Finally, the product owner should run through some checks to verify that the
user story in question meets the definition of done. When a user story meets
the definition of done, the product owner updates the task board by moving
the user story from the Accept column to the Done column.

While the product owner and the development team are working together to
create shippable functionality for the product, the scrum master helps the
scrum team to identify and clear roadblocks that appear along the way.

Identifying roadblocks
It’s a major part of the scrum master’s role to manage and help resolve road-
blocks that the team identifies. Roadblocks are anything that thwarts a team
member from working to full capacity.

15_9781118026243-ch09.indd 16415_9781118026243-ch09.indd 164 4/4/12 3:18 PM4/4/12 3:18 PM

166 Part III: Working in Agile

Table 9-1 Common Roadblocks and Solutions

Roadblock Action

The development team needs simula-
tion software for a range of mobile
devices so that it can test the user
interface and code.

Do some research to estimate the cost of
the software, prepare a summary of that
for the product owner, and have a dis-
cussion about funding. Process the pur-
chase through procurement, and deliver
the software to the development team.

Management wants to borrow a
development team member to write
a couple of reports. All your devel-
opment team members are fully
occupied.

Tell the requesting manager that person
is not available, and is not likely to be
for the duration of the project. As you’re
likely a problem solver, you may want to
suggest alternative ways in which the
manager could get what he or she needs.
You may also have to justify why you
cannot pull the person off the project,
even for half a day.

A development team member
cannot move forward on a user story
because he or she does not fully
understand the story. The product
owner is out of the office for the day
on a personal emergency.

Work with the development team
member to determine if any work can
happen around this user story while
waiting on an answer. Help locate
another person who could answer the
question. Failing that, ask the develop-
ment team to review upcoming tasks (not
related to this stopped one) and move
things around to keep productivity up.

A user story has grown in complexity
and now appears to be too large for
the sprint length.

Have the development team work with
the product owner to break the user
story down so that some demonstrable
value can be completed in the current
sprint and the rest can be put back
into the product backlog. The goal is to
ensure this sprint ends with completion,
even if that is a smaller user story, rather
than an incomplete user story.

So far in this chapter, you have seen how the scrum team starts its day and
works throughout the day. The scrum team wraps up each day with a few
tasks as well. The next section shows you how to end a day within a sprint.

15_9781118026243-ch09.indd 16615_9781118026243-ch09.indd 166 3/30/12 3:39 PM3/30/12 3:39 PM

170 Part III: Working in Agile

Figure 10-1:
The sprint

review
in the

Roadmap to
Value.

Stage 6: SPRINT REVIEW
Description: Demonstration of
working product
Owner: Product Owner and Development Team
Frequency: At the end of each sprint

The following sections show you what you need to do to prepare for a sprint
review, how to run a sprint review meeting, and the importance of collecting
feedback.

Preparing to demonstrate
Preparation for the sprint review meeting should not take more than a
few minutes at most. Even though the sprint review might sound formal,
the essence of showcasing in agile is informality. The meeting needs to be
prepared and organized, but that doesn’t require a lot of flashy materials.
Instead, the sprint review focuses on demonstrating what the development
team has done.

 If your sprint review is overly showy, ask yourself if you are covering up for
not spending enough time developing? Get back to working on value — creat-
ing a working product.

The preparation for the sprint review meeting involves the product owner
and the development team. The product owner needs to know which user
stories the development team completed during the sprint. The development
team needs to be ready to demonstrate completed, shippable functionality.

 Within the context of a single sprint, shippable functionality means that the
product owner has verified the work product and deemed it complete per the
sprint-level definition of done. The actual release may be at a later time, per
the communicated release plan. Find out more about shippable functionality
in Chapter 9.

For the development team to demonstrate the code in the sprint review, it
must be complete according to the definition of done. This means that the
code is fully

 ✓ Developed

 ✓ Tested

16_9781118026243-ch10.indd 17016_9781118026243-ch10.indd 170 3/30/12 3:40 PM3/30/12 3:40 PM

171 Chapter 10: Showcasing Work and Incorporating Feedback

 ✓ Integrated

 ✓ Documented

As user stories are moved to a status of done throughout the sprint, the
product owner and development team should check that the code meets
these standards. This continuous validation throughout the sprint reduces
end-of-sprint risks and helps the scrum team spend as little time as possible
preparing for the sprint review.

Knowing the completed user stories and being ready to demonstrate those sto-
ries’ functionality prepares you to confidently start the sprint review meeting.

The sprint review meeting
Sprint review meetings have two activities: demonstrate and showcase the
scrum team’s finished work, and allow stakeholders to provide feedback on
that work. Figure 10-2 shows the different loops of feedback a scrum team
receives about a product.

This cycle of feedback repeats throughout the project as follows:

 ✓ Each day, development team members work together in a collaborative
environment that encourages feedback through peer reviews and infor-
mal communication.

 ✓ Throughout each sprint, as the development team completes each
requirement, the product owner provides feedback by reviewing the
working functionality for acceptance.

 ✓ At the end of each sprint, project stakeholders provide feedback about
completed functionality in the sprint review meeting.

 ✓ With each release, customers who use the product provide feedback
about new working functionality.

Figure 10-2:
Agile

project
feedback

loops.

PROJECT

Release 1

Project
stakeholder

feedback
each sprint

Customer
feedback

each
release

Release 2

Development
team feedback

throughout
the day

Product
owner

feedback
throughout
the sprint

Project
stakeholder

feedback
each sprint

Customer
feedback

each
release

Development
team feedback

throughout
the day

Product
owner

feedback
throughout
the sprint

16_9781118026243-ch10.indd 17116_9781118026243-ch10.indd 171 3/30/12 3:40 PM3/30/12 3:40 PM

172 Part III: Working in Agile

The sprint review usually takes place later in the day on the last day of the
sprint, often a Friday. One of the rules of scrum is to spend no more than one
hour in a sprint review meeting for every week of the sprint — Figure 10-3
shows a quick reference.

Figure 10-3:
Sprint

review
meeting to

sprint length
ratio.

If my sprint is
this long...

My sprint review
meeting should last
no more than...

One week

Two weeks

Three weeks

Four weeks

One hour

Two hours

Three hours

Four hours

Here are some guidelines for your sprint review meeting:

 ✓ No PowerPoint slides! Refer to the sprint backlog if you need to display a
list of completed user stories.

 ✓ The entire scrum team should participate in the meeting.

 ✓ Anyone who is interested in the meeting may attend. The project stake-
holders, the summer interns, and the CEO could all theoretically be in a
sprint review.

 ✓ The product owner introduces the release goal, the sprint goal, and the
new capabilities included.

 ✓ The development team demonstrates what it completed during the sprint.
Typically, the development team showcases new features or architecture.

 ✓ The demonstration should be on equipment as close as possible to the
planned production environment. For example, if you are creating a
mobile application, present the features on a smartphone — perhaps
hooked up to a monitor — rather than a laptop.

 ✓ The stakeholders can ask questions and provide feedback on the dem-
onstrated product.

 ✓ No non-disclosed rigged functionality, such as hard-coded values and
other programming shortcuts that make the application look more
mature than it currently is.

 ✓ The product owner can lead a discussion about what is coming next
based on the features just presented and new items that have been
added to the product backlog during the current sprint.

16_9781118026243-ch10.indd 17216_9781118026243-ch10.indd 172 3/30/12 3:40 PM3/30/12 3:40 PM

176 Part III: Working in Agile

Figure 10-4:
Sprint ret-
rospective
meeting to

sprint length
ratio.

If my sprint is
this long...

One week

Two weeks

Three weeks

Four weeks

45 minutes

1.5 hours

2.25 hours

Three hours

My sprint review
meeting should last
no more than...

The sprint retrospective should cover three primary questions:

 ✓ What went well during the sprint?

 ✓ What would we like to change?

 ✓ How can we implement that change?

The following areas are also open for discussion:

 ✓ Results: Compare the amount of work planned with what the develop-
ment team actually completed. Review the sprint burndown chart (see
Chapter 9) and what it tells the development team about how they are
working.

 ✓ People: Discuss team composition and alignment.

 ✓ Relationships: Talk about communication, collaboration, and working in
pairs.

 ✓ Processes: Go over getting support, development, and code review
processes.

 ✓ Tools: How are the different tools working for the scrum team? Think
about the artifacts, electronic tools, communication tools, and technical
tools.

 ✓ Productivity: How can the team improve productivity and get the most
work done within the next sprint?

It helps to have these discussions in a structured format. Esther Derby and
Diana Larsen, authors of Agile Retrospectives: Making Good Teams Great
(Pragmatic Bookshelf, 2006), have a great agenda for sprint retrospectives that
keeps the team focused on discussions that will lead to real improvement:

16_9781118026243-ch10.indd 17616_9781118026243-ch10.indd 176 3/30/12 3:40 PM3/30/12 3:40 PM

181 Chapter 11: Preparing for Release

 ✓ The definition of done is different for work completed during a release
sprint. In a development sprint, “done” means the completion of working
software for a user story. In a release sprint, the definition is the comple-
tion of all tasks required for release.

 ✓ A release sprint includes tests and approvals that may not be practical
to do within a development sprint, such as performance testing, load
testing, security testing, focus groups, and legal review.

 Agile development teams may create two definitions of done: one for sprints
and one for releases.

Table 11-1 shows a comparison between the parts of a development sprint
and a release sprint. For detailed descriptions of the key elements in a sprint,
see Chapters 8 through 10.

Table 11-1 Development Sprint Elements Versus
 Release Sprint Elements

Element Used in Development
Sprint

Used in Release Sprint

Sprint planning Yes Yes
Product backlog Yes No
Sprint backlog Yes

For a development sprint,
your sprint backlog con-
tains user stories and the
tasks needed to create
each user story. You esti-
mate user stories rela-
tively, with story points.
(See Chapters 7 and 8.)

Yes

In a release sprint, you no
longer need to put your
requirements in the user
story format. Instead, you
will create only a list of tasks
needed for the release. You
will not use story points,
either; just add the estimated
hours each task will take.

Burndown chart Yes Yes
Daily scrum Yes Yes

Involve stakeholders from
outside the scrum team who
have tasks associated with
releasing the product, like
enterprise build managers or
other configuration managers.

Daily activities In a development sprint,
your daily activities
focus on creating ship-
pable code.

In a release sprint, your daily
activities focus on preparing
your working software for
external release.

(continued)

17_9781118026243-ch11.indd 18117_9781118026243-ch11.indd 181 3/30/12 3:40 PM3/30/12 3:40 PM

182 Part III: Working in Agile

Table 11-1 (continued)

Element Used in Development
Sprint

Used in Release Sprint

End-of-day reporting Yes Yes
Sprint review Yes Yes

Some organizations use a
release sprint review as a go
or no-go meeting to authorize
launching the product.

Sprint retrospective Yes Yes

 A release sprint should not be a parking lot for tasks that the development
team didn’t finish in the development sprints. You may not be surprised to
hear that development teams sometimes will be tempted to delay tasks until
the release sprint. You can avoid this by ensuring that the product owner and
the team have created a proper definition of done for requirements in devel-
opment sprints, including testing, integration, and documentation.

While running a release sprint, you also need to prepare your organization
for the product release. The next section discusses how to get stakeholders
within your company or organization ready for product deployment.

Preparing the Organization
for Product Deployment

A product release often affects a number of departments within a company
or organization. To get the organization ready for the new product, the prod-
uct owner and scrum master need to prepare a sprint backlog, or a list of the
goals and tasks, for the release sprint. See how to create a sprint backlog in
Chapter 9.

The release sprint backlog should cover activities by the development team.
It also needs to address activities to be performed by groups within the orga-
nization, but outside of the scrum team, to prepare for the product deploy-
ment. These departments might include

 ✓ Marketing: Are there any marketing campaigns related to the new prod-
uct that need to launch at the same time as the product?

 ✓ Sales: Are there specific customers who need to know about the prod-
uct? Will the new product cause an increase in sales?

17_9781118026243-ch11.indd 18217_9781118026243-ch11.indd 182 3/30/12 3:40 PM3/30/12 3:40 PM

189 Chapter 12: Managing Scope and Procurement

Table 12-1 Historical Versus Agile Scope Management

Scope Management with
Traditional Approaches

Scope Management with Agile Approaches

Project teams attempt to identify
and document complete scope at
the beginning of the project, when
the teams are the least informed
about the product.

You gather high level requirements at the
beginning of your project, breaking down
and further detailing requirements that are
going to be implemented in the immediate
future. Requirements are gathered and
refined throughout the project as the team’s
knowledge of customer needs and project
realities grows.

Organizations view scope change
after the requirements phase is
complete as negative.

Organizations view change as a positive
way to improve a product as the project
progresses.

Changes late in the project, when you know
the most about the product, are often the
most valuable changes.

Project managers rigidly control
and discourage changes once
stakeholders sign off on
requirements.

Change management is an inherent part of
agile processes.

You assess scope and have an opportunity
to include new requirements with every sprint.

The product owner determines the value
and priority of new requirements and adds
those requirements to the product backlog.

The cost of change increases
over time, while the ability to make
changes decreases.

You fix resources and schedule initially.

New features with high priority don’t neces-
sarily cause budget or schedule slip; they
simply push out the lowest-priority features.

Iterative development allows for changes
with each new sprint.

Projects often include scope
bloat, unnecessary product fea-
tures included out of fear of mid-
project change.

You determine scope by considering which
features directly support the project vision,
the release goal, and the sprint goal.

The development team creates the most
valuable features first to guarantee their
inclusion and to ship those features as soon
as possible.

Less valuable features might never be created.

19_9781118026243-ch12.indd 18919_9781118026243-ch12.indd 189 3/30/12 3:41 PM3/30/12 3:41 PM

191 Chapter 12: Managing Scope and Procurement

Figure 12-1:
The

Roadmap
to Value.

 St
ag

e
1:

VI
SI

ON
De

sc
rip

tio
n:

 T
he

 g
oa

ls
fo

r t
he

 p
ro

du
ct

an
d

its
 a

lig
nm

en
t w

ith
 th

e
co

m
pa

ny
’s

st
ra

te
gy

Ow
ne

r:
Pr

od
uc

t O
w

ne
r

Fr
eq

ue
nc

y:
At

 le
as

t a
nn

ua
lly

St
ag

e
5:

DA
ILY

 S
CR

UM
De

sc
rip

tio
n:

 To
 e

st
ab

lis
h

an
d

co
or

di
na

te
pr

io
rit

ie
s o

f t
he

 d
ay

Ow
ne

r:
De

ve
lo

pm
en

t T
ea

m
Fr

eq
ue

nc
y:

Da
ily

St
ag

e
2:

PR
OD

UC
T

RO
AD

M
AP

De
sc

rip
tio

n:
 H

ol
ist

ic
 vi

ew
 o

f p
ro

du
ct

fe
at

ur
es

 th
at

 c
re

at
e

th
e

pr
od

uc
t v

isi
on

Ow
ne

r:
Pr

od
uc

t O
w

ne
r

Fr
eq

ue
nc

y:
At

 le
as

t b
ia

nn
ua

lly

St
ag

e
3:

RE
LE

AS
E

PL
AN

NI
NG

Hi
gh

es
t P

rio
rit

y
Fe

at
ur

es
 La

un
ch

Hi
gh

 P
rio

rit
y

Fe
at

ur
es

 La
un

ch

JA
N

FE
B

M
AR

 A
PR

 M
AY

 J
UN

 J
UL

(S
ta

ge
s 1

-3
 a

re
 b

es
t p

ra
ct

ic
es

 o
ut

sid
e

of
 c

or
e

Sc
ru

m
)

De
sc

rip
tio

n:
 R

el
ea

se
 ti

m
in

g
fo

r
sp

ec
ifi

c
pr

od
uc

t f
un

ct
io

na
lit

y
Ow

ne
r:

Pr
od

uc
t O

w
ne

r
Fr

eq
ue

nc
y:

At
 le

as
t q

ua
rte

rly

Re
le

as
e

Pr
od

uc
t

[P
er

 th
e

Re
le

as
e

Pl
an

]

St
ag

e
7:

SP
RI

NT
 R

ET
RO

SP
EC

TI
VE

De
sc

rip
tio

n:
 Te

am
 re

fin
em

en
t o

f
en

vir
on

m
en

t a
nd

 p
ro

ce
ss

es
 to

op
tim

ize
 e

ffi
ci

en
cy

Ow
ne

r:
Sc

ru
m

 Te
am

Fr
eq

ue
nc

y:
At

 th
e

en
d

of
 e

ac
h

sp
rin

t

1.
Ex

pe
ct

ed
2.

M
or

e

co
m

pl
ic

at
ed3.

Le
ss

co

m
pl

ic
at

ed

4.
No

t

pa
rti

ci
pa

tin
g5.

Ly
in

g
6.

Fa
ilin

g
fa

st

St
ag

e
6:

SP
RI

NT
 R

EV
IE

W
De

sc
rip

tio
n:

 D
em

on
st

ra
tio

n
of

w
or

kin
g

pr
od

uc
t

Ow
ne

r:
Pr

od
uc

t O
w

ne
r a

nd
De

ve
lo

pm
en

t T
ea

m
Fr

eq
ue

nc
y:

At
 th

e
en

d
of

 e
ac

h
sp

rin
t

De
sc

rip
tio

n:
 E

st
ab

lis
h

sp
ec

ifi
c

ite
ra

tio
n

go
al

s a
nd

 ta
sk

s
Ow

ne
r:

Pr
od

uc
t O

w
ne

r a
nd

 D
ev

el
op

m
en

t T
ea

m
Fr

eq
ue

nc
y:

At
 th

e
st

ar
t o

f e
ac

h
sp

rin
t

St
ag

e
4:

SP
RI

NT
 P

LA
NN

IN
G

Pr
ep

ar
at

io
n

Ex
ec

ut
io

n

Sprint

24
 h

ou
rs

1 -
 4

W
ee

ks

19_9781118026243-ch12.indd 19119_9781118026243-ch12.indd 191 3/30/12 3:41 PM3/30/12 3:41 PM

194 Part IV: Managing in Agile

 3. Prioritize the requirement against other requirements in the product
backlog and add the new requirement to the product backlog, in
order of priority. Consider the following:

 • The product owner knows the most about the product’s business
needs and how important the new requirement may be in relation to
other requirements. The product owner may also reach out to project
stakeholders for additional insight to a requirement’s priority.

 • The development team may also have technical insight about a
new requirement’s priority. For example, if Requirement A and
Requirement B have equal business value, but you need to complete
Requirement B for Requirement A to be feasible, the development
team will need to alert the product owner.

 • While the development team and project stakeholders can provide
information to help prioritize a requirement, determining priority
is ultimately the product owner’s job.

 • Adding new requirements to the product backlog may mean other
requirements move down the list in the product backlog. Figure 12-2
shows the addition of a new requirement in the product backlog.

The product backlog is a complete list of all known scope for the product and
is your most important tool for managing scope change on an agile project.

Figure 12-2:
Adding
a new

requirement
to the

product
backlog.

Remaining Product Backlog

User Story

User Story

User Story

User Story

User Story

User Story

User Story

User Story

New

Original
Product
Budget

Keeping the product backlog up to date will allow you to quickly prioritize
and add new requirements. With a current product backlog, you always
understand the scope left in a project. Chapter 7 has more information about
prioritizing requirements.

19_9781118026243-ch12.indd 19419_9781118026243-ch12.indd 194 3/30/12 3:41 PM3/30/12 3:41 PM

196 Part IV: Managing in Agile

 11. The best architectures, requirements, and designs emerge from self-
organizing teams.

Table 12-3 highlights the differences between procurement on traditional
projects and procurement on agile projects.

Table 12-2 Agile Artifacts and Scope Management Roles

Artifact Role in Establishing Scope Role in Scope Change

Vision Statement: A
definition of the prod-
uct’s end goal. Chapter
7 has more about the
vision statement.

Use the vision statement
as a benchmark to judge
whether features belong
in scope for the current
project.

When someone intro-
duces new requirements,
those requirements must
support the project vision
statement.

Product Roadmap: A
holistic view of product
features that create the
product vision. Chapter
7 has more about the
product roadmap.

Product scope is part of
the product roadmap.
Requirements at a feature
level are good for business
conversations about what
it means to realize the
product vision.

Update the product
roadmap as new require-
ments arise. The product
roadmap provides visual
communication of the
new feature’s inclusion in
the project.

Release Plan: A
digestible mid-term
target focused around
a minimum set of
marketable features.
Chapter 8 has more
about the release plan.

The release plan shows
the scope of the current
release. You may want
to plan your releases by
themes — logical groups
of requirements.

Add new features that
belong in the current
release to the release
plan. If the new user story
doesn’t belong in the
current release, leave it
on the product backlog
for a future release.

Product Backlog: A
complete list of all
known scope for the
product. Chapters 7
and 8 offer more about
the product backlog.

If a requirement is in
scope, it is part of the
product backlog.

The product backlog
contains all scope
changes. New, high-
priority features push
lower-priority features
down on the product
backlog.

Sprint Backlog: The
user stories and tasks
within the scope of the
current sprint. Chapter
8 has more about the
sprint backlog.

The sprint backlog
contains the user stories
that are in scope for the
current sprint.

The sprint backlog
establishes what is
allowed in the sprint.
Once the development
team commits to the
sprint goal in the sprint
planning meeting, only
the development team
can modify the sprint
backlog.

19_9781118026243-ch12.indd 19619_9781118026243-ch12.indd 196 3/30/12 3:41 PM3/30/12 3:41 PM

208 Part IV: Managing in Agile

Table 13-1 Historical Versus Agile Time Management

Time Management with
Traditional Approaches

Time Management with
Agile Approaches

Fixed scope directly drives the schedule. Scope is not fixed on agile projects.
Time can be fixed, and development
teams can create the requirements
that will fit into a specific time frame.

Project managers determine time
based on the requirements gathered at
the beginning of the project.

During the project, scrum teams assess
and reassess how much work they can
complete in a given time frame.

Teams work on all project requirements
at one time in phases, like requirements-
gathering, design, development, testing,
and deployment. There is no schedule
difference between critical require-
ments and optional requirements.

Scrum teams work in sprints and
complete all the work on the highest-
priority, highest-value requirements first.

Teams do not start actual product
development until later in the project,
after the requirements-gathering and
design phases are complete.

Scrum teams start product development
in the very first sprint.

Time is more variable on
traditional projects.

Time-boxed sprints on agile projects
stay stable.

Project managers try to predict schedules
at the project start, when they know
little about the product.

Scrum teams determine long-range
schedules on actual development
performance in sprints. Scrum teams
adjust time estimates throughout the
project as they learn more about the
product and the development team’s
speed, or velocity. You find more about
velocity later in this chapter.

 Fixed-schedule and fixed-price projects have lower risk with agile techniques,
because agile development teams always deliver the highest priority function-
ality within the time or budget constraints.

A big benefit of agile time management techniques is that agile project teams
can deliver products much earlier than traditional project teams. For example,
starting development earlier and completing functionality in iterations often
allow agile project teams that work with my company, Platinum Edge, to
bring products to the market 30 percent to 40 percent faster.

 The reason agile projects finish sooner isn’t complicated; they simply start
development sooner.

In the next section, find out how to manage time on an agile project.

20_9781118026243-ch13.indd 20820_9781118026243-ch13.indd 208 3/30/12 3:41 PM3/30/12 3:41 PM

218 Part IV: Managing in Agile

Figure 13-1:
Multiple

scrum
teams on a

project.
 Pr

od
uc

t
VP

 o
r D

ir
ec

to
r L

ev
el

Fu
nc

tio
n

A
ct

iv
ity

1.
1.

1.
1

1.
1.

11.
1

1

1.
1.

2

M
od

ul
e

A
M

od
ul

e
B

M
od

ul
e

C

1.
1.

1.
2

1.
1.

1.
3

1.
1.

2.
1

M
od

ul
e

A
M

od
ul

e
B

M
od

ul
e

C

1.
1.

2.
2

1.
1.

2.
3

M
od

ul
e

D

1.
1.

2.
4

Ta
sk

In
te

gr
at

io
n

Sc
ru

m
 T

ea
m

In
te

gr
at

io
n

Sc
ru

m
 T

ea
m

In
te

gr
at

io
n

Sc
ru

m
 T

ea
m

In
te

gr
at

io
n

Sc
ru

m
 T

ea
m

In
te

gr
at

io
n

Sc
ru

m
 T

ea
m

In
te

gr
at

io
n

Sc
ru

m
 T

ea
m

 1

Pr
od

uc
t O

w
ne

r

De
ve

lo
pm

en
t

Te
am

Sc
ru

m
 M

as
te

r

In
te

gr
at

io
n

Sc
ru

m
 T

ea
m

Pr
od

uc
t O

w
ne

r
De

ve
lo

pm
en

t
Te

am
Sc

ru
m

 M
as

te
r

Pr
od

uc
t O

w
ne

r
De

ve
lo

pm
en

t
Te

am
Sc

ru
m

 M
as

te
r

20_9781118026243-ch13.indd 21820_9781118026243-ch13.indd 218 3/30/12 3:41 PM3/30/12 3:41 PM

219 Chapter 13: Managing Time and Cost

Using agile artifacts for time management
The product roadmap, release plan, product backlog, and sprint backlog all
play a part in time management. Table 13-2 shows how each artifact contributes
to time management.

Table 13-2 Agile Artifacts and Time Management Roles

Artifact Role in Time Management

Product roadmap: The product
roadmap is a prioritized, holistic
view of the high-level requirements
that support the product’s vision.
Find more about the product
roadmap in Chapter 7.

The product roadmap is a strategic look at the
overall project priorities. While the product
roadmap likely will not have specific dates, it
will have general date ranges for groups of
functionality and will allow an initial framing
for bringing the product to market.

Product backlog: The product
backlog is a complete list of all
currently known product require-
ments. Find more about the product
backlog in Chapters 7 and 8.

The user stories in your product backlog
will have estimated story points. Once you
know your development team’s velocity, you
can use the total number of story points in
the product backlog to determine a realistic
project end date.

Release plan: The release plan
contains a release schedule for
a minimum set of requirements.
Find more about the release plan
in Chapter 8.

The release plan will have a target release
date for a specific goal that is supported by
a minimal set of marketable functionalities.
Scrum teams only plan and work on one
release at a time.

Sprint backlog: The sprint backlog
contains the requirements and
tasks for the current sprint. Find
more about the sprint backlog in
Chapter 8.

During your sprint planning meeting, you
estimate individual tasks in the backlog
in hours.

At the end of each sprint, you take the total
completed story points from the sprint back-
log to calculate your development team’s
velocity for that sprint.

In the next sections, you dive into cost management for agile projects. Cost
management is directly related to time management. You compare traditional
approaches to cost management to those within agile projects. You find out
how to estimate costs on an agile project and how to use velocity to forecast
your long-term budget.

20_9781118026243-ch13.indd 21920_9781118026243-ch13.indd 219 3/30/12 3:41 PM3/30/12 3:41 PM

220 Part IV: Managing in Agile

What’s Different About Cost in Agile
Cost is a project’s financial budget. When you work on an agile project, you
focus on value, you exploit the power of change, and you aim for simplicity.
Agile Principles 1, 2, and 10 state the following:

 1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

 2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

 10. Simplicity — the art of maximizing the amount of work not done —
is essential.

Because of this emphasis on value, change, and simplicity, agile projects have
a very different approach to budget and cost management than traditional
projects. Table 13-3 highlights some of the differences.

Table 13-3 Historical Versus Agile Cost Management

Cost Management with Traditional
Approaches

Cost Management with
Agile Approaches

Cost, like time, is based on fixed scope. Project schedule, not scope, has the
biggest impact on cost. You can start
with a fixed cost and fixed amount of
time, and complete requirements that
fit into your budget and schedule.

Organizations estimate project costs and
fund projects before the project starts.

Product owners often secure project
funding after the product roadmap
stage is complete. Some organizations
even fund agile projects one release
at a time; product owners will secure
funding after completing release
planning for each release.

New requirements mean higher costs.
Because project managers estimate
costs based on what they know at the
project start, which is very little, cost
overruns are common.

Project teams can replace lower-priority
requirements with new, equivalently-
sized high-priority requirements with
no impact on time or cost.

20_9781118026243-ch13.indd 22020_9781118026243-ch13.indd 220 3/30/12 3:41 PM3/30/12 3:41 PM

221 Chapter 13: Managing Time and Cost

Cost Management with Traditional
Approaches

Cost Management with
Agile Approaches

Scope bloat (see Chapter 12) wastes
large amounts of money on features
that people simply do not use.

Because agile development teams
complete requirements by priority,
they concentrate on creating only the
product features that users really need,
whether those features are added on
day one or day 100 of the project.

Projects cannot generate revenue until
the project is complete.

Project teams can release working,
revenue-generating functionality early,
creating a self-funding project.

 When costs increase, project sponsors sometimes find themselves in a kind of
hostage situation. The historical project management model does not call for
any complete product functionality until the very end of a project. Since tradi-
tional approaches to development are all-or-nothing proposals, if costs
increase and stakeholders don’t pay more for the product, they will not get
any finished requirements. The incomplete product becomes a kidnapped
hostage; pay more, or get nothing.

In the following sections, you find out about cost approaches within agile
projects, how to estimate costs for an agile project, how to control your
budget, and how to lower costs.

How to Manage Cost in Agile
On agile projects, cost is mostly a direct expression of project time. Because
scrum teams consist of full-time, dedicated team members, they have a set team
cost — generally expressed as an hourly or fixed rate per person — that should
be the same for each sprint. Consistent sprint lengths, work hours, and team
members enable you to accurately use velocity to predict development speed.
Once you use velocity to determine how many sprints your project will take —
that is, how long your project will be — you can know how much your scrum
team will cost for the whole project.

Project cost also includes the cost for resources like hardware, software,
licenses, and any other supplies you might need to complete your project.

In this section, you find out how to create an initial budget and how to use
the scrum team’s velocity to determine long-range costs.

20_9781118026243-ch13.indd 22120_9781118026243-ch13.indd 221 3/30/12 3:41 PM3/30/12 3:41 PM

222 Part IV: Managing in Agile

Creating an initial budget
To create your project budget, you need to know the cost for your scrum
team, per sprint, and the cost for any additional resources you need to
complete the project.

Typically, you calculate the cost for your scrum team using an hourly rate for
each team member. Multiply each team member’s hourly rate by his or her
available hours per week by the number of weeks in your sprints to calculate
your scrum team’s per-sprint cost. Table 13-4 shows a sample budget for a
scrum team — the development team, the scrum master, and the product
owner — for a two-week sprint.

Table 13-4 Sample Scrum Team Budget for a Two-Week Sprint

Team
Member

Hourly Rate Weekly
Hours

Weekly
Cost

Sprint Cost
(2 Weeks)

Don $80 40 $3,200 $6,400
Peggy $70 40 $2,800 $5,600
Bob $70 40 $2,800 $5,600
Mike $65 40 $2,600 $5,200
Joan $85 40 $3,400 $6,800
Tommy $75 40 $3,000 $6,000
Pete $55 40 $2,200 $4,400
Total 280 $20,000 $40,000

The cost for additional resources will vary by project. Take the following
into account when determining your project costs:

 ✓ Hardware costs
 ✓ Software, including license costs
 ✓ Hosting costs
 ✓ Training costs
 ✓ Miscellaneous team expenses, such as additional office supplies, team

lunches, travel costs, and the price of any tools you may need

These costs may be one-time costs, rather than per-sprint costs. I suggest
separating these costs within your budget; as you see in the next section, you
need your cost for each sprint to determine the cost for the project.

20_9781118026243-ch13.indd 22220_9781118026243-ch13.indd 222 3/30/12 3:41 PM3/30/12 3:41 PM

223 Chapter 13: Managing Time and Cost

Creating a self-funding project
A big benefit of agile projects is the capability to have a self-funding project.
Scrum teams deliver working functionality at the end of each sprint and make
that functionality available to the marketplace at the end of each release cycle.
If your product is an income-generating product, you could use revenue from
early releases to help fund the rest of your project.

For example, an e-commerce website might generate $15,000 a month in sales
after the first release, $40,000 a month after the second release, and so on.
Tables 13-5 and 13-6 compare income on a sample traditional project to the
income from a self-funding agile project.

In Table 13-5, the project created $100,000 in income after six months of
development. Now compare the income in Table 13-5 to the income generated
in Table 13-6.

Table 13-5 Income from a Traditional Project with
 a Final Release After Six Months

Month Income Generated Total Project Income

January $0 $0
February $0 $0
March $0 $0
April $0 $0
May $0 $0
June $100,000 $100,000

Table 13-6 Income from a Project with Monthly Releases
 and a Final Release after Six Months

Month/Release Income Generated Total Project Income

January $15,000 $15,000
February $25,000 $40,000
March $40,000 $80,000
April $70,000 $150,000
May $80,000 $230,000
June $100,000 $330,000

20_9781118026243-ch13.indd 22320_9781118026243-ch13.indd 223 3/30/12 3:41 PM3/30/12 3:41 PM

229 Chapter 14: Managing Team Dynamics and Communication

Table 14-1 Historical Versus Agile Team Dynamics

Team Management with
Traditional Approaches

Team Dynamics with Agile Approaches

Project teams rely on com-
mand and control — a top-down
approach to project management,
where the project manager is
responsible for assigning tasks to
team members and attempting to
control what the team does.

Scrum teams are self-managing, self-
organizing, and benefit from servant
leadership. Instead of top-down management,
a servant-leader coaches, removes obsta-
cles, and prevents distractions to help the
scrum team thrive.

Companies evaluate individual
employee performance.

Agile organizations evaluate scrum team
performance; every member of the scrum
team receives the same review. Scrum
teams, like any sports team, succeed or fail
as a whole team.

Team members often find them-
selves working on more than one
project at a time, switching their
attention back and forth.

Development teams are dedicated to one
project at a time, and reap the benefits of
focus.

Development team members have
distinct roles, like “programmer”
or “tester.”

Development teams work cross-functionally,
doing different jobs within the team to ensure
they complete priority requirements quickly.

Development teams have no
specific size limits.

Development teams are intentionally limited
in size. Ideally, development teams have
seven, plus or minus two people.

People are commonly referred to
as “resources,” a shortened term
for “human resources.”

People are called “people” or “team
members.” On an agile project, you probably
will not hear the term “resource” used to
refer to people.

Becoming self-managing
and self-organizing
On agile projects, scrum teams are directly accountable for creating deliverables.
Scrum teams manage themselves, organizing their own work and tasks.
No one person tells the scrum team what to do. This doesn’t mean that
agile projects have no leadership. Each member of the scrum team has the
opportunity to lead, based on his or her skills, ideas, and initiative.

21_9781118026243-ch14.indd 22921_9781118026243-ch14.indd 229 3/30/12 3:42 PM3/30/12 3:42 PM

231 Chapter 14: Managing Team Dynamics and Communication

T
a

b
le

 1
4-

2
P

ro
je

c
t

M
a

n
a

g
e

m
e

n
t

a
n

d
 S

e
lf

-M
a

n
a

g
in

g
 T

e
a

m
s

A
re

a
 o

f
P

ro
je

c
t

M
a

n
a

g
e

m
e

n
t

H
o

w
 D

e
ve

lo
p

m
e

n
t

T
e

a
m

s
S

e
lf

-M
a

n
a

g
e

H

o
w

 P
ro

d
u

c
t

O
w

n
e

rs

S
e

lf
-M

a
n

a
g

e

H
o

w
 S

c
ru

m
 M

a
st

e
rs

S

e
lf

-M
a

n
a

g
e

Sc
op

e
M

ay
 su

gg
es

t f
ea

tu
re

s b
as

ed

on
 te

ch
ni

ca
l a

ffi
ni

ty
.

W
or

k d
ire

ct
ly

w
ith

 th
e

pr
od

uc
t

ow
ne

r t
o

cl
ar

ify
 re

qu
ire

m
en

ts
.

Id
en

tify
 ho

w
 m

uc
h w

or
k t

he
y c

an

co
m

m
it t

o c
om

ple
tin

g i
n a

 sp
rin

t.

Id
en

tif
y t

he
 ta

sk
s t

o
co

m
pl

et
e

sc
op

e
in

 th
e

sp
rin

t b
ac

klo
g.

De
te

rm
in

e
th

e
be

st
 w

ay
 to

cr

ea
te

 sp
ec

ifi
c

fe
at

ur
es

.

Us
e

th
e

pr
od

uc
t v

isi
on

, t
he

re

le
as

e
go

al
, a

nd
 e

ac
h

sp
rin

t
go

al
 to

 d
et

er
m

in
e

if
an

d
w

he
re

 sc
op

e
ite

m
s b

el
on

g.

Us
e

pr
od

uc
t b

ac
klo

g
pr

io
ri-

tiz
at

io
n

to
 d

et
er

m
in

e
w

hi
ch

re

qu
ire

m
en

ts
 a

re
 d

ev
el

op
ed

.

Re
m

ov
e

im
pe

di
m

en
ts

 th
at

 lim
it

th
e

am
ou

nt
 o

f s
co

pe
 th

e
de

ve
lo

pm
en

t
te

am
 c

an
 c

re
at

e.

Th
ro

ug
h c

oa
ch

ing
, h

elp
 de

ve
lop

m
en

t
te

am
s b

ec
om

e m
or

e p
ro

du
ct

ive
 w

ith

ea
ch

 su
cc

es
siv

e s
pr

int
.

Pr
oc

ur
em

en
t

Id
en

tif
y t

he
 to

ol
s t

he
y n

ee
d

to

cr
ea

te
 th

e
pr

od
uc

t.

W
or

k w
ith

 th
e

pr
od

uc
t o

w
ne

r
to

 g
et

 th
os

e
to

ol
s.

Se
cu

re
 n

ec
es

sa
ry

 fu
nd

in
g

fo
r t

oo
ls

an
d

eq
ui

pm
en

t f
or

de

ve
lo

pm
en

t t
ea

m
s.

He
lp

 p
ro

cu
re

 to
ol

s a
nd

 e
qu

ip
m

en
t

th
at

 a
cc

el
er

at
e

de
ve

lo
pm

en
t

te
am

 ve
lo

ci
ty

.

Ti
m

e
Pr

ov
id

e
ef

fo
rt

es
tim

at
es

 fo
r

pr
od

uc
t f

ea
tu

re
s.

Id
en

tif
y w

ha
t f

ea
tu

re
s t

he
y c

an

cr
ea

te
 in

 a
 g

ive
n

tim
e

fra
m

e
—

th

e
sp

rin
t.

Of
te

n
pr

ov
id

e
tim

e
es

tim
at

es

fo
r t

as
ks

 in
 e

ac
h

sp
rin

t.

Ch
oo

se
 th

ei
r o

w
n

sc
he

du
le

s
an

d
m

an
ag

e
th

ei
r o

w
n

tim
e.

En
su

re
 th

at
 th

e
de

ve
lo

pm
en

t
te

am
 c

or
re

ct
ly

un
de

rs
ta

nd
s

pr
od

uc
t f

ea
tu

re
s s

o
th

at

de
ve

lo
pm

en
t t

ea
m

s c
an

 c
or

-
re

ct
ly

es
tim

at
e

th
e

ef
fo

rt
to

cr

ea
te

 th
os

e
fe

at
ur

es
.

Us
e

ve
lo

ci
ty

 —
 d

ev
el

op
m

en
t

sp
ee

d
—

 to
 fo

re
ca

st
 lo

ng
-

te
rm

 ti
m

el
in

es
.

Fa
ci

lit
at

e
es

tim
at

io
n

po
ke

r g
am

es
.

He
lp

 d
ev

el
op

m
en

t t
ea

m
s i

nc
re

as
e

ve
lo

ci
ty

, w
hi

ch
 a

ffe
ct

s t
im

e.

Pr
ot

ec
t t

ea
m

 fr
om

 o
rg

an
iza

tio
na

l
tim

e-
w

as
te

rs
 a

nd
 d

ist
ra

ct
io

ns
.

(c
o
n
ti

n
u
e
d
)

21_9781118026243-ch14.indd 23121_9781118026243-ch14.indd 231 3/30/12 3:42 PM3/30/12 3:42 PM

232 Part IV: Managing in Agile

T
a

b
le

 1
4-

2
(c

o
n

ti
n

u
e

d
)

A
re

a
 o

f
P

ro
je

c
t

M
a

n
a

g
e

m
e

n
t

H
o

w
 D

e
ve

lo
p

m
e

n
t

T
e

a
m

s
S

e
lf

-M
a

n
a

g
e

H

o
w

 P
ro

d
u

c
t

O
w

n
e

rs

S
e

lf
-M

a
n

a
g

e

H
o

w
 S

c
ru

m
 M

a
st

e
rs

S

e
lf

-M
a

n
a

g
e

Co
st

Pr
ov

id
e

ef
fo

rt
es

tim
at

es
 fo

r p
ro

d-
uc

t f
ea

tu
re

s.
Ul

tim
at

el
y r

es
po

ns
ib

le
 fo

r t
he

bu

dg
et

 a
nd

 re
tu

rn
 o

n
in

ve
st

-
m

en
t o

n
an

 a
gi

le
 p

ro
je

ct
.

Us
e

ve
lo

ci
ty

 to
 fo

re
ca

st
 lo

ng
-

te
rm

 c
os

ts
, b

as
ed

on

 ti
m

el
in

es
.

Fa
ci

lita
te

 e
st

im
at

io
n

po
ke

r g
am

es
.

He
lp

 d
ev

el
op

m
en

t t
ea

m
s i

nc
re

as
e

ve
lo

ci
ty

, w
hi

ch
 a

ffe
ct

s c
os

t.

Te
am

 d
yn

am
ic

s
Pr

ev
en

t b
ot

tle
ne

ck
s b

y w
or

kin
g

cr
os

s-
fu

nc
tio

na
lly

, a
nd

 a
re

 w
ill-

in
g

to
 ta

ke
 o

n
di

ffe
re

nt
 ty

pe
s o

f
ta

sk
s.

Co
nt

in
uo

us
ly

le
ar

n
an

d
te

ac
h

on
e

an
ot

he
r.

Co
m

m
it,

bo
th

 in
di

vid
ua

lly
 a

nd
 a

s
pa

rt
of

 th
e

sc
ru

m
 te

am
, to

 th
ei

r
pr

oj
ec

ts
 a

nd
 to

 o
ne

 a
no

th
er

.

St
riv

e
to

 b
ui

ld
 c

on
se

ns
us

 w
he

n
m

ak
in

g
im

po
rta

nt
 d

ec
isi

on
s.

Co
m

m
it

to
 th

ei
r p

ro
je

ct
s a

nd

ar
e

in
te

gr
at

ed
 m

em
be

rs
 o

f t
he

sc

ru
m

 te
am

.

Fa
ci

lit
at

e
sc

ru
m

 te
am

 c
ol

lo
ca

tio
n.

He
lp

 re
m

ov
e

im
pe

di
m

en
ts

 to
 sc

ru
m

te

am
 se

lf-
m

an
ag

em
en

t.

Co
m

m
it t

o t
he

ir
pr

oje
ct

s a
nd

 ar
e i

nt
e-

gr
at

ed
 m

em
be

rs
 of

 th
e s

cr
um

 te
am

.

St
riv

e
to

 b
ui

ld
 c

on
se

ns
us

 w
ith

in
 th

e
sc

ru
m

 te
am

 w
he

n
m

ak
in

g
im

po
rta

nt

de
ci

sio
ns

.

Fa
ci

lit
at

e
re

la
tio

ns
hi

ps
 b

et
w

ee
n

th
e

sc
ru

m
 te

am
 a

nd
 st

ak
eh

ol
de

rs
.

Co
m

m
un

ic
at

io
n

Re
po

rt
on

 p
ro

gr
es

s,
up

co
m

in
g

ta
sk

s,
an

d
id

en
tif

y r
oa

db
lo

ck
s i

n
th

ei
r d

ai
ly

sc
ru

m
 m

ee
tin

gs
.

Ke
ep

 th
e

sp
rin

t b
ac

klo
g

up
-to

-
da

te
 d

ai
ly,

 p
ro

vid
in

g
ac

cu
ra

te
,

im
m

ed
ia

te
 in

fo
rm

at
io

n
ab

ou
t a

pr

oj
ec

t’s
 st

at
us

.

Pr
es

en
t w

or
kin

g
fu

nc
tio

na
lit

y t
o

pr
oj

ec
t s

ta
ke

ho
ld

er
s a

t t
he

 sp
rin

t
re

vie
w

 m
ee

tin
gs

 a
t t

he
 e

nd
 o

f
ea

ch
 sp

rin
t.

Co
m

m
un

ic
at

e
in

fo
rm

at
io

n
ab

ou
t t

he
 p

ro
du

ct
 a

nd
 th

e
bu

sin
es

s n
ee

ds
 to

 d
ev

el
op

-
m

en
t t

ea
m

s o
n

an

on
go

in
g

ba
sis

.

Co
m

m
un

ic
at

e
in

fo
rm

at
io

n
ab

ou
t t

he
 p

ro
je

ct
 p

ro
gr

es
s t

o
pr

od
uc

t s
ta

ke
ho

ld
er

s.

He
lp

 p
re

se
nt

 w
or

kin
g

fu
nc

-
tio

na
lit

y t
o

st
ak

eh
ol

de
rs

 a
t t

he

sp
rin

t r
ev

ie
w

 m
ee

tin
gs

 a
t t

he

en
d

of
 e

ac
h

sp
rin

t.

En
co

ur
ag

e
fa

ce
-to

-fa
ce

 c
om

m
un

ic
a-

tio
n

be
tw

ee
n

al
l s

cr
um

 te
am

 m
em

be
rs

.

Fo
st

er
 c

lo
se

 c
oo

pe
ra

tio
n

be
tw

ee
n

th
e

sc
ru

m
 te

am
 a

nd
 o

th
er

 d
ep

ar
tm

en
ts

w

ith
in

 th
e

co
m

pa
ny

 o
r o

rg
an

iza
tio

n.

21_9781118026243-ch14.indd 23221_9781118026243-ch14.indd 232 3/30/12 3:42 PM3/30/12 3:42 PM

233 Chapter 14: Managing Team Dynamics and Communication

A
re

a
 o

f
P

ro
je

c
t

M
a

n
a

g
e

m
e

n
t

H
o

w
 D

e
ve

lo
p

m
e

n
t

T
e

a
m

s
S

e
lf

-M
a

n
a

g
e

H

o
w

 P
ro

d
u

c
t

O
w

n
e

rs

S
e

lf
-M

a
n

a
g

e

H
o

w
 S

c
ru

m
 M

a
st

e
rs

S

e
lf

-M
a

n
a

g
e

Qu
al

ity
Co

m
m

it
to

 p
ro

vid
in

g
te

ch
ni

ca
l

ex
ce

lle
nc

e
an

d
go

od
 d

es
ig

n.

Te
st

 th
ei

r w
or

k t
hr

ou
gh

ou
t t

he

da
y a

nd
 c

om
pr

eh
en

siv
el

y t
es

t
al

l d
ev

el
op

m
en

t e
ac

h
da

y.

In
sp

ec
t t

he
ir

w
or

k a
nd

 a
da

pt

fo
r i

m
pr

ov
em

en
ts

 a
t s

pr
in

t r
et

-
ro

sp
ec

tiv
e

m
ee

tin
gs

 a
t t

he
 e

nd

of
 e

ac
h

sp
rin

t.

Ad
d

ac
ce

pt
an

ce
 c

rit
er

ia
 to

re

qu
ire

m
en

ts
.

En
su

re
 th

at
 th

e
de

ve
lo

pm
en

t
te

am
 c

or
re

ct
ly

un
de

rs
ta

nd
s

an
d

in
te

rp
re

ts
 re

qu
ire

m
en

ts
.

Pr
ov

id
e

de
ve

lo
pm

en
t t

ea
m

s
w

ith
 fe

ed
ba

ck
 a

bo
ut

 th
e

pr
od

uc
t f

ro
m

 th
e

or
ga

ni
za

tio
n

an
d

fro
m

 th
e

m
ar

ke
tp

la
ce

.

Ac
ce

pt
 fe

at
ur

es
 a

s D
on

e
du

rin
g

ea
ch

 sp
rin

t.

He
lp

fa
cil

ita
te

 th
e s

pr
int

 re
tro

sp
ec

tiv
e.

He
lp

 e
ns

ur
e

fa
ce

-to
-fa

ce
 c

om
-

m
un

ic
at

io
n

be
tw

ee
n

sc
ru

m
 te

am

m
em

be
rs

, w
hi

ch
 in

 tu
rn

 h
el

ps
 e

ns
ur

e
qu

al
ity

 w
or

k.

He
lp

 c
re

at
e

a
su

st
ai

na
bl

e
de

ve
lo

p-
m

en
t e

nv
iro

nm
en

t s
o

th
at

 th
e

de
ve

l-
op

m
en

t t
ea

m
 c

an
 p

er
fo

rm

at
 it

s b
es

t.

Ri
sk

Id
en

tif
y a

nd
 d

ev
el

op
 th

e
ris

k
m

iti
ga

tio
n

ap
pr

oa
ch

 fo
r

ea
ch

 sp
rin

t.

Al
er

t t
he

 sc
ru

m
 m

as
te

r t
o

ro
ad

-
bl

oc
ks

 a
nd

 d
ist

ra
ct

io
ns

.

Us
e

in
fo

rm
at

io
n

fro
m

 e
ac

h
sp

rin
t r

et
ro

sp
ec

tiv
e

to
 re

du
ce

ris

k i
n

fu
tu

re
 sp

rin
ts

.

Em
br

ac
e

cr
os

s-
fu

nc
tio

na
lit

y
to

 re
du

ce
 ri

sk
 if

 o
ne

 m
em

be
r

un
ex

pe
ct

ed
ly

le
av

es
 th

e
te

am
.

Co
m

m
it

to
 d

el
ive

rin
g

sh
ip

pa
bl

e
fu

nc
tio

na
lit

y a
t t

he
 e

nd
 o

f e
ac

h
sp

rin
t,

re
du

ci
ng

 ri
sk

 in
 th

e
ov

er
al

l p
ro

je
ct

.

Lo
ok

 a
t o

ve
ra

ll p
ro

je
ct

 ri
sk

s
as

 w
el

l a
s r

isk
s t

o
th

ei
r R

OI

co
m

m
itm

en
t.

He
lp

 p
re

ve
nt

 ro
ad

bl
oc

ks
 a

nd

di
st

ra
ct

io
ns

.

He
lp

 re
m

ov
e

ro
ad

bl
oc

ks
 a

nd

id
en

tif
ie

d
ris

ks
.

Fa
ci

lit
at

e
de

ve
lo

pm
en

t t
ea

m
 c

on
ve

r-
sa

tio
ns

 a
bo

ut
 p

os
sib

le
 ri

sk
s.

21_9781118026243-ch14.indd 23321_9781118026243-ch14.indd 233 3/30/12 3:42 PM3/30/12 3:42 PM

239 Chapter 14: Managing Team Dynamics and Communication

Figure 14-1:
E-mail
versus

face-to-face
conversation.

Ruby has a
question for

Evalyn

E-mail Face-to-face Conversation

1. Ruby writes &
sends an e-mail

1. Ruby asks
Evalyn a question

2. Evalyn answers
the question

4. Evalyn explains
further

3. Ruby asks more
about Evalyn’s

answer

Ruby
continues on

her task

2. Ruby does not
work on the

problem while
waiting for the

answer.

3. Evalyn
received

Ruby’s e-mail

4. Evalyn stops
what she is

doing (lost time
for Evalyn)

5. Evalyn keeps
doing what she is

doing (lost time
for Ruby)

6. Evalyn reads
Ruby’s e-mail

7. Evalyn mentally
prioritizes the e-

mail against all of
her other e-mails
(100+ sometimes)

8. Evalyn
eventually writes
& sends Ruby an
e-mail with the

answer

9. Ruby receives
Evalyn’s e-mail

10. Ruby
eventually reads
Evalyn’s e-mail

11. Ruby needs
clarification on

Evalyn’s Answer

12. Ruby
responds to

Evalyn’s e-mail with
a second question

13. Evalyn stops
what she is

doing (lost time
for Evalyn)

or

or

14. Evalyn keeps
doing what she is

doing (lost time
for Ruby)

15. Evalyn reads
e-mail (Evalyn

may not respond
immediately)

16. Evalyn writes
& sends Ruby an
e-mail with the

answer

17. Ruby receives
Evalyn’s e-mail

18. Ruby reads
Evalyn’s e-mail

(With face-to-face communication, Ruby
has a better chance of correctly
understanding Evalyn’s answer.)

(With e-mail, did Ruby correctly understand
Evalyn’s answer? We may not know until Ruby

completes her task.)

The idea of scrum team members working in the same physical location and
being able to talk in person, instantly, is important to team dynamics. You find
more details on communication later in this chapter. Also, Chapter 5 provides
details on how to set up the physical environment for a scrum team.

Having a cultural environment conducive to scrum team growth is another
success factor for agile projects. Everyone on a scrum team should be able to

 ✓ Feel safe.

 ✓ Speak his or her mind in a positive way.

 ✓ Challenge the status quo.

 ✓ Be open about challenges without being penalized.

 ✓ Request resources that will make a difference to the project.

 ✓ Make mistakes and learn from them.

21_9781118026243-ch14.indd 23921_9781118026243-ch14.indd 239 3/30/12 3:42 PM3/30/12 3:42 PM

242 Part IV: Managing in Agile

Table 14-3 Success of Collocated and Dislocated Scrum Teams

Team Location Success Percentage

Collocated scrum team 83%
Dislocated but physically reachable 72%
Distributed across geographies 60%
Agile Adoption Rate Survey Results (Scott W. Ambler, Ambysoft, Copyright© 2008)

How do you have a successful agile project with a dislocated scrum team? I have
three words: communicate, communicate, and communicate. Because daily
in-person conversations are not possible, agile projects with dislocated scrum
teams require unique efforts by everyone working on the project. Here are some
tips for non-collocated scrum team members to successfully communicate:

 ✓ Use videoconferencing technology to simulate face-to-face conversations.
A large percentage of interpersonal communication is visual, involving
facial cues, hand gestures, even shoulder shrugs. Videoconferencing enables
people to see one another and benefit from nonverbal communication as
well as a discussion.

 ✓ If possible, arrange for the scrum team members to meet in-person in
a central location at least once at the beginning of the project, if not
multiple times throughout the project. The shared experience of meeting
in-person, even once or twice, can help build teamwork among dislocated
team members.

 ✓ Use an online collaboration tool. Some tools simulate white boards and
user story cards, track conversations, and enable multiple people to
update wikis with the latest information on a given topic.

 ✓ Include scrum team members’ pictures on online collaboration tools,
or even in e-mail address signature lines. Humans respond to faces
more than written words alone. A simple picture can help humanize
instant messages and e-mails.

 ✓ Be cognizant of time zone differences. Put multiple clocks, showing
different time zones, on the wall so you do not accidentally call someone’s
cellphone at 3 a.m. and wake that person up — or wonder why he or she
isn’t answering.

 ✓ Be flexible because of time zone differences as well. You may need to
take video calls or phone calls at odd hours from time to time to help
keep project work moving. For drastic time zone differences, consider
trading off on times you are available. One week, Team A can be available
in the early morning. The next, Team B can be available later in the evening.
That way, no one always has an inconvenience.

21_9781118026243-ch14.indd 24221_9781118026243-ch14.indd 242 3/30/12 3:42 PM3/30/12 3:42 PM

244 Part IV: Managing in Agile

The Agile Manifesto also addresses communication, valuing working software
over comprehensive documentation. While documentation has value, work-
ing software has more importance on an agile project.

Table 14-4 shows some differences between communication on traditional
projects and on agile projects.

 The question of how much documentation is required is not a volume ques-
tion but an appropriateness question. Why do you need a specific document?
How can you create it in the simplest way possible? You can use poster-sized
sticky sheets to put on the wall and make information digestible. This can also
work best for visually conveying artifacts like the vision statement, the defi-
nition of done, the impediments log, and important architectural decisions.
Pictures truly are worth a thousand words.

The following sections show how to take advantage of the agile framework’s
emphasis on in-person communication, focus on simplicity, and value of
working software as a communication medium.

Table 14-4 Historical Versus Agile Communication

Communication Management with
Traditional Approaches

Communication Management with
Agile Approaches

Team members might make no special
effort for in-person conversations.

Agile project management approaches
value face-to-face communication as
the best way to convey information.

Traditional approaches place high value
on documentation. Teams may create
a large number of complex documents
and status reports based on process,
rather than considering actual need.

Agile documents, or artifacts, are
intentionally simple and provide
information that is barely sufficient.
Agile artifacts only contain essential
information and can often convey
project status at a glance.

Project teams use the show, don’t tell
concept, showing working software
to communicate progress on a regular
basis in the sprint review.

Team members may be required to
attend a large number of meetings,
whether or not those meetings are
useful or necessary.

Meetings on agile projects are, by
design, as quick as possible and will
include only people who will truly add
to the meeting and benefit from the
meeting. Agile meetings provide all the
benefits of face-to-face communication
without wasting time. The structure
of agile meetings is to enhance, not
reduce, productivity.

21_9781118026243-ch14.indd 24421_9781118026243-ch14.indd 244 3/30/12 3:42 PM3/30/12 3:42 PM

245 Chapter 14: Managing Team Dynamics and Communication

How to Manage Communication in Agile
To manage communication on agile projects, you need to understand how
different agile communication methods work and how to use them together.
You also need to know why status on an agile project is different and how
to report project progress to stakeholders. The following sections show
you how.

Understanding agile communication
methods
There are many ways to communicate on an agile project, through artifacts,
meetings, and informally.

Face-to-face conversations are the heart and soul of agile projects. When scrum
team members talk with one another about the project throughout every day,
communication is easy. Over time, scrum team members understand each
other’s personality, communication style, and thought processes, and will be
able to communicate quickly and effectively.

Figure 14-2, from Alistair Cockburn’s presentation Software Development as a
Cooperative Game (Copyright Humans and Technology, Inc.), shows the effec-
tiveness of face-to-face communication versus other types of communication.

Figure 14-2:
Comparison
of communi-
cation types.

Co
m

m
un

ic
at

io
n

Ef
fe

ct
iv

en
es

s

Richness (”temperature”) of communication channel

Paper Audiotape

Videotape

Cold

2 people
on e-mail

(No Question-Answer)

(Question-and-Answer)
2 people
on phone

2 people at
whiteboard

Hot

21_9781118026243-ch14.indd 24521_9781118026243-ch14.indd 245 3/30/12 3:42 PM3/30/12 3:42 PM

246 Part IV: Managing in Agile

In previous chapters, I describe a number of artifacts and meetings that fit with
agile projects. All the agile artifacts and meetings play a role in communication.
Agile meetings provide a format for communicating in a face-to-face environment.
Meetings on agile projects have a specific purpose and a specific amount of time
in order to allow the development team the time to work, rather than spend time
in meetings. Agile artifacts provide a format for written communication that is
structured, but not cumbersome or unnecessary.

Table 14-5 provides a view of the different communication channels on
an agile project.

Table 14-5 Agile Project Communication Channels

Channel Type Role in Communication

Project planning,
release planning,
and sprint
planning

Meetings Planning meetings communicate the
details of the project, the release, and
the sprint to the scrum team. Learn more
about planning meetings in Chapters 7
and 8.

Product vision
statement

Artifact The product vision statement
communicates the end goal of the project
to the project team and the organization.
Find out more about the product vision in
Chapter 7.

Product roadmap Artifact The product roadmap communicates a
long-term view of the features that sup-
port the product vision and are likely
to be part of the project. Find out more
about the product roadmap in Chapter 7.

Product backlog Artifact The product backlog communicates the
scope of the project as a whole to the
project team. Find out more about the
product backlog in Chapters 7 and 8.

Release plan Artifact The release plan communicates the goals
for a specific release. Find out more
about the release plan in Chapter 8.

Sprint backlog Artifact When updated daily, the sprint backlog
provides immediate sprint and project status
to anyone who needs that information.
The burndown chart on the sprint backlog
provides a quick visual of the sprint status.
Find out more about the sprint backlog in
Chapters 8 and 9.

21_9781118026243-ch14.indd 24621_9781118026243-ch14.indd 246 3/30/12 3:42 PM3/30/12 3:42 PM

247 Chapter 14: Managing Team Dynamics and Communication

Channel Type Role in Communication

Task board Artifact Using a task board visually radiates out
status of the current sprint or release to
anyone who walks by the scrum team’s
work area. Find out more
about the task board in Chapter 9.

Daily scrum Meeting The daily scrum provides the scrum team
with a verbal, face-to-face opportunity to
coordinate the priorities of the day and
identify any challenges. Find out more
about daily scrum meetings in Chapter 9.

Face-to-face
conversations

Informal Face-to-face conversations are the most
important mode of communication on an
agile project.

Sprint review Meeting The sprint review is the embodiment of
the show, don’t tell philosophy. Displaying
working software to the entire project
team conveys project progress in a more
meaningful way than a report ever could.
Find out more about sprint reviews in
Chapter 10.

Sprint retrospective Meeting The sprint retrospective allows the scrum
team to communicate with one another
specifically for improvement. Find out
more about sprint retrospectives in
Chapter 10.

Meeting notes Informal Meeting notes are an optional, informal
communication method on an agile project.
Meeting notes can capture action items
from a meeting to ensure people on the
scrum team remember them for later.

Notes from a sprint review can record
new features for the product backlog.

Notes from a sprint retrospective can
remind the scrum team of commitments
for improvement.

Collaborative
solutions

Informal White boards, sticky notes, and elec-
tronic collaboration tools all help the
scrum team communicate. Ensure that
these tools augment, rather than replace,
face-to-face conversations.

21_9781118026243-ch14.indd 24721_9781118026243-ch14.indd 247 3/30/12 3:42 PM3/30/12 3:42 PM

250 Part IV: Managing in Agile

Figure 14-3:
Profiles of
burndown

charts.

1. Expected 2.More Complicated 3. Less Complicated

4. Not Participating 5. Lying 6. Failing Fast

21_9781118026243-ch14.indd 25021_9781118026243-ch14.indd 250 3/30/12 3:42 PM3/30/12 3:42 PM

252 Part IV: Managing in Agile

 8. Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.

 9. Continuous attention to technical excellence and good design
enhances agility.

 10. Simplicity — the art of maximizing the amount of work not done —
is essential.

 11. The best architectures, requirements, and designs emerge from self-
organizing teams.

 12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Through these principles, the agile framework places a large emphasis on
creating an environment where scrum teams are able to create valuable,
working products. Agile approaches encourage quality both in the sense of
products working correctly and meeting the needs of project stakeholders.

Table 15-1 shows some differences between quality management on tradi-
tional projects and on agile projects.

Table 15-1 Historical Versus Agile Quality

Quality Management with
Traditional Approaches

Quality Dynamics with Agile Approaches

Testing is the last phase of a project
before product deployment. Some
features are tested months after
they were created.

Testing is a daily part of each sprint and is
included in each requirement’s definition of
done. You use automated testing, allowing
quick and robust testing every day.

Quality is often a reactive practice,
with focus mostly on product testing
and issue resolution.

You address quality both reactively,
through testing, and proactively,
encouraging practices to set the stage
for quality work. Examples of proactive
quality approaches include face-to-face
communication, pair programming, and
established coding standards.

Problems are riskier when found at
the end of a project. Sunk costs are
high by the time teams reach testing.

You can create and test riskier features in
early sprints, when sunk costs are still low.

Problems, sometimes called bugs,
are hard to find at the end of a project,
and fixes for problems at the end of
a project are costly.

Problems are easy to find when you
test a smaller amount of work. Fixes are
easier when you fix something you just
created, rather than something you created
months earlier.

Sometimes, in order to meet a dead-
line or save money, teams cut the
testing phase short.

Testing is assured on agile projects,
because it is part of every sprint.

22_9781118026243-ch15.indd 25222_9781118026243-ch15.indd 252 3/30/12 3:42 PM3/30/12 3:42 PM

253 Chapter 15: Managing Quality and Risk

At the start of this chapter, I state that quality and risk are closely related.
The agile approaches in Table 15-1 greatly reduce the risk and unnecessary
cost that usually accompany quality management.

Another difference about quality on agile projects is the multiple quality feed-
back loops throughout a project. In Figure 15-1, you see the different types
of product feedback a scrum team receives in the course of a project. The
development team incorporates this feedback into the product, increasing
product quality on a regular basis.

Figure 15-1:
Quality

feedback
in an agile

project.

PROJECT

Development
Team Feedback

Throughtout
the Day

Product
Owner

Feedback
Throughout
the Sprint

Project
Stakeholder

Feedback
Each Sprint

Customer
Feedback

Each
Release

RELEASE 1

Development
Team Feedback

Throughtout
the Day

Product
Owner

Feedback
Throughout
the Sprint

Project
Stakeholder

Feedback
Each Sprint

Customer
Feedback

Each
Release

RELEASE 2

 In Chapter 14, I tell you that development teams on agile projects can include
everyone who works on a product. Development teams on agile projects
typically include people who are experts in creating and executing tests and
ensuring quality. Development team members are cross-functional; that is,
every team member may do different jobs at different times within the projects.
Cross-functionality extends to quality activities like preventing issues, testing,
and fixing bugs.

In the next section, you see how to use agile project management techniques
to increase quality.

Bugs. Bugs? Bugs!
Why do we call computer problems “bugs”?
The very first computers were large, glass-
encased machines that took up entire rooms.
In 1945, one of these behemoth computers,
the Mark II Aiken Relay Calculator at Harvard
University, had problems with one of its cir-
cuits. Engineers traced the issue to a moth —
a literal bug — in the machine. After that, the
team’s running joke was that any issue with

the computer had to be a bug. The term stuck,
and people still use “bug” today to describe
hardware problems, software problems, and
sometimes even problems outside of the computer
science realm. The engineers at Harvard even
taped the moth to a logbook. That first bug is
now on display at the Smithsonian National
Museum of American History.

22_9781118026243-ch15.indd 25322_9781118026243-ch15.indd 253 3/30/12 3:42 PM3/30/12 3:42 PM

255 Chapter 15: Managing Quality and Risk

Figure 15-2:
Testing

within
sprints.

SP
RI

N
T

1:
 H

ig
he

st
 P

rio
rit

y
Fe

at
ur

es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

AG
IL

E

SP
RI

N
T

2:
 H

ig
h

Pr
io

rit
y

Fe
at

ur
es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

SP
RI

N
T

3:
 M

ed
iu

m
 P

rio
rit

y
Fe

at
ur

es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

SP
RI

N
T

4:
 L

ow
er

 P
rio

rit
y

Fe
at

ur
es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

SP
RI

N
T

5:
 O

pt
io

na
l P

rio
rit

y
Fe

at
ur

es

De
si

gn

Te
st

In
te

gr
at

e

Te
st

De
ve

lo
p

Te
st

REQUIREMENTS

DEMO & FEEDBACK

S T A R T

R E L E A S E

22_9781118026243-ch15.indd 25522_9781118026243-ch15.indd 255 3/30/12 3:42 PM3/30/12 3:42 PM

260 Part IV: Managing in Agile

just words; our facial expressions, gestures, body language, and even where we
are looking contribute to communicating and understanding one another.

Face-to-face communication helps ensure quality on agile projects because it
leads to better interpretation of requirements, of roadblocks, and of discussions
between scrum team members. Regular face-to-face communication requires
a collocated scrum team.

Figure 15-3:
A user

story and
acceptance

criteria.

As

I want to

so that

Title Transfer money between accounts

review fund levels in my accounts
and transfer funds between accounts.

1. click on transfer funds

2. choose from account
 drop-down

3. choose to account

4. type in an amount and
 click transfer

Transfer options appear on
 screen
My available accounts with
 balance appear

My available accounts with
 balance appear
Money is transferred between
 by from and to accounts

I can complete the transfer and see the
new balances in the relevant accounts.

Jennifer

Carol,

Value Estimate

When I do this: This happens:

Author

Sustainable development
Chances are, at some point in your life, you have found yourself working or
studying long hours for an extended period of time. You may have even pulled
an all-nighter or two, getting no sleep at all for a night. How did you feel during
this time? Did you make good decisions? Did you make any silly mistakes?

Unfortunately, many teams on traditional projects find themselves working
long, crazy hours, especially toward the end of a project, when a deadline is
looming and it seems like the only way to finish is to spend weeks working
extra-long days. Those long days often mean more problems later, as team
members start making mistakes — some silly, some more serious — and
eventually burn out.

On agile projects, scrum teams help ensure that they do quality work by
creating an environment where members of the development team sustain a
constant working pace throughout the project. Working in sprints helps sustain

22_9781118026243-ch15.indd 26022_9781118026243-ch15.indd 260 4/4/12 3:12 PM4/4/12 3:12 PM

265 Chapter 15: Managing Quality and Risk

Table 15-2 Historical Versus Agile Risk

Risk Management with Traditional
Approaches

Risk Dynamics with Agile Approaches

Large numbers of projects fail or are
challenged.

Risk of catastrophic failure — spending
large amounts of money with nothing to
show — is almost eliminated.

The bigger, longer, and more complex
the project, the more risky it is. Risk is
highest at the end of a project.

You gain product value immediately,
rather than sinking costs into a project
for months or even years with the grow-
ing chance of failure.

Conducting all the testing at the end
of a project means that finding serious
problems can put the entire project
at risk.

You test at the same time you develop. If
a technical approach, a requirement, or
even an entire product is not feasible,
the development team discovers this in a
short time, and you have more time to
course correct. If correction is not pos-
sible, stakeholders spend less money on
a failed project.

Projects are unable to accommodate
new requirements mid-project without
increased time and cost because
there is extensive sunk cost in even
the lowest-priority requirements.

You welcome change for the benefit
of the product. Agile projects accom-
modate new high-priority requirements
without increasing time or cost by
removing a low-priority requirement of
equal time and cost.

Traditional projects require time and
cost estimates at the project start,
when teams know the least about
the project. Estimates are often
inaccurate, creating a gap between
expected and actual project sched-
ules and budgets.

You can estimate project time and cost
using the scrum team’s actual perfor-
mance, or velocity. You refine estimates
throughout the project, because the
longer you work on a project, the more
you learn about the project, the require-
ments, and the scrum team.

When stakeholders do not have a
unified goal, they can end up confus-
ing the project team with conflicting
information about what the product
should achieve.

You have a single product owner, who is
responsible for creating a vision for the
product and represents the stakehold-
ers to the project team.

Unresponsive or absent stakeholders
can cause project delays and result
in products that do not achieve the
right goals.

The product owner is responsible for
providing information about the product
immediately. You also have a scrum
master, who helps remove impediments
on a daily basis.

22_9781118026243-ch15.indd 26522_9781118026243-ch15.indd 265 3/30/12 3:42 PM3/30/12 3:42 PM

266 Part IV: Managing in Agile

Risk on agile projects declines as the project progresses. Figure 15-4 shows a
comparison of risk and time between waterfall projects and agile projects.

All projects have some risk, regardless of your project approach. However,
with agile project management, the days of catastrophic project failure —
spending large amounts of time and money with no return on investment
(ROI) — are over. The elimination of large-scale failure is the biggest difference
between risk on traditional projects and on agile projects. In the next section,
you see why.

How to Manage Risk in Agile
In this section, you examine key structures of agile projects that reduce risk
over the life of the project. You find out how to use agile tools and events
to find risks at the right time in a project and how to prioritize and mitigate
those risks.

Reducing risk inherently
Agile approaches, when implemented correctly, inherently reduce risk in
product development. Developing in sprints ensures a short time between
project investment and proof that the product works. Sprints also provide
the potential for a project to generate revenue early on. The sprint review,
the sprint retrospective, and the product owner’s involvement during each
sprint provide constant product feedback to the development team. Ongoing
feedback helps prevent deviations between product expectations and the
completed product.

Figure 15-4:
Agile

projects’
declining

risk model.

Waterfall

Time Time

Agile
$

and
Risk

$
and
Risk

00

Business Value (ROI)

Cost Investment

Impact of Termination

22_9781118026243-ch15.indd 26622_9781118026243-ch15.indd 266 3/30/12 3:42 PM3/30/12 3:42 PM

267 Chapter 15: Managing Quality and Risk

Three especially important factors in risk reduction on agile projects are the
definition of done, self-funding projects, and the idea of failing fast. You find
out more about each of these factors in the next sections.

Risk and the definition of done
In Chapter 10, I discuss when a requirement is done. To consider a requirement
complete and ready to demonstrate at the end of a sprint, that requirement
must meet the scrum team’s definition of done. The product owner and the
development team agree upon the details of the definition; definitions of
done usually include

 ✓ Developed: The development team must fully create the working
product requirement.

 ✓ Tested: The development team must have tested that the product works
correctly and is bug-free.

 ✓ Integrated: The development team must have ensured that the requirement
works in conjunction with the whole product and any related systems.

 ✓ Documented: The development team must have created notes about
how it created the product.

Figure 15-5 shows a sample definition of done, with details.

Figure 15-5:
Sample

definition of
done.

Definition of Done

QA Environment
Unit Tested
Functional Tested
Integration Tested
User Acceptance Tested
Regression Tested
XDocs

Staging Environment
Performance Tested
Security Tested
Enterprise System Integrated
Focus Group Tested
User Documentation
Training Documentation

Load Testing

Risks AcceptedReleaseSprint

The product owner and the development team may also create a list of
acceptable risks. For example, they may agree that end-to-end regression
testing or performance testing are overkill for the sprint definition of done.
Acceptable risks allow the development team to concentrate on the most
important activities.

The definition of done drastically changes the risk factor for agile projects.
By creating a product that meets the definition of done in every sprint, you
end each sprint with a working build and a usable product. Even if outside
factors cause a project to end early, project stakeholders will always see
some value and have a working product to use now and build upon later.

22_9781118026243-ch15.indd 26722_9781118026243-ch15.indd 267 4/4/12 3:12 PM4/4/12 3:12 PM

268 Part IV: Managing in Agile

Self-funding projects
Agile projects can mitigate financial risk in a unique way that traditional projects
cannot: the self-funding project. Chapter 13 includes examples of self-funding
projects. If your product is an income-generating product, you could use that
income to help fund the rest of your project.

In Chapter 13, I show you two different project ROI models. Here they are again, in
Tables 15-3 and 15-4. The projects in both tables are to create identical products.

Table 15-3 Income from a Traditional Project with
 a Final Release after Six Months

Month Income Generated Total Project Income

January $0 $0
February $0 $0
March $0 $0
April $0 $0
May $0 $0
June $100,000 $100,000

In Table 15-3, the project created $100,000 in income after six months of
development. Now compare the ROI in Table 15-3 to the ROI in Table 15-4.

Table 15-4 Income from an Agile Project with Monthly Releases
 and a Final Release After Six Months

Month/Release Income Generated Total Project Income

January $15,000 $15,000
February $25,000 $40,000
March $40,000 $80,000
April $70,000 $150,000
May $80,000 $230,000
June $100,000 $330,000

In Table 15-4, the project generated income with the very first release. By the
end of six months, the project had generated $330,000 — $230,000 more than
the project in Table 15-3.

22_9781118026243-ch15.indd 26822_9781118026243-ch15.indd 268 3/30/12 3:42 PM3/30/12 3:42 PM

269 Chapter 15: Managing Quality and Risk

The ability to generate income in a short amount of time has a number of
benefits for companies and project teams. Self-funding agile projects make
good financial sense for almost any organization, but they can be especially
useful to organizations that may not have the funds to create a product up
front. For groups short on cash, self-funding can enable projects that would
otherwise not be feasible.

Self-funding projects also help mitigate the risk that a project would be cancelled
due to lack of funds. A company emergency may dictate diverting a traditional
project’s budget elsewhere, delaying or cancelling the project. However, a project
that generates additional revenue with every release has a good chance of
continuing during a crisis.

Finally, self-funding projects help sell stakeholders on a project in the first
place; it’s hard to argue with a project that provides continuous value and
pays for at least part of the project costs from the start.

Failing fast
All product development efforts carry some risk of failure. Testing within
sprints introduces the idea of failing fast: Instead of sinking costs into a long
effort for requirements, design, and development, and then finding problems
that will prevent the project from moving forward, development teams on agile
projects can identify critical problems within a few sprints. This quantitative
risk mitigation can save organizations large amounts of money.

Tables 15-5 and 15-6 illustrate the difference in sunk costs for a failed waterfall
project and a failed agile project. The projects in both tables are for identical
products with identical costs.

Table 15-5 Cost of Failure on a Waterfall Project

Month Phase and Issues Sunk Project
Cost

Total Sunk
Project Cost

January Requirements
Phase

$80,000 $80,000

February Requirements
Phase

$80,000 $160,000

March Design Phase $80,000 $240,000
April Design Phase $80,000 $320,000
May Design Phase $80,000 $400,000
June Development Phase $80,000 $480,000

(continued)

22_9781118026243-ch15.indd 26922_9781118026243-ch15.indd 269 3/30/12 3:42 PM3/30/12 3:42 PM

270 Part IV: Managing in Agile

Table 15-5 (continued)

Month Phase and Issues Sunk Project
Cost

Total Sunk
Project Cost

July Development Phase $80,000 $560,000
August Development Phase $80,000 $640,000
September Development Phase $80,000 $720,000

October QA Phase: Large-
scale problem
uncovered during
testing.

$80,000 $800,000

November QA Phase:
Development
team attempted to
resolve problem to
continue develop-
ment.

$80,000 $880,000

December Project cancelled;
product not viable.

0 $880,000

In Table 15-5, the project stakeholders spent six months and close to a million
dollars to find out that a product idea would not work. Compare the sunk
cost in Table 15-5 to that in Table 15-6.

Table 15-6 Cost of Failure on an Agile Project

Month Sprint and Issues Sunk Project
Cost

Total Sunk
Project Cost

January Sprint 1: No issues.

Sprint 2: No issues.

$80,000 $80,000

February Sprint 3: Large-scale problem
uncovered during testing
resulted in failed sprint;
sprint still failed.

Sprint 4: Development team
attempted to resolve problem
to continue development; sprint
ultimately failed.

$80,000 $160,000

Final Project cancelled; product
not viable.

0 $160,000

22_9781118026243-ch15.indd 27022_9781118026243-ch15.indd 270 3/30/12 3:42 PM3/30/12 3:42 PM

272 Part IV: Managing in Agile

Table 15-7 Agile Project Risk Management Tools

Artifact or Meeting Role in Risk Management

Product vision The product vision statement helps unify the project team’s
definition of product goals, mitigating the risk of misunder-
standings about what the product will need to accomplish.

While creating the product vision, the project team might
think of risks on a very high level, in conjunction with the
marketplace, customers, and organizational strategy. Find
out more about the product vision in Chapter 7.

Product roadmap The product roadmap provides a visual overview of the
project’s requirements and priorities. This visual overview
allows the project team to quickly identify gaps in require-
ments and incorrectly prioritized requirements. Find out more
about the product roadmap in Chapter 7.

Product backlog The product backlog is a tool for accommodating change
within the project. Being able to add changes to the product
backlog and reprioritize requirements regularly helps turn the
traditional risk associated with scope changes into a way to
create a better product.

Keeping the requirements and the priorities on the product
backlog current helps ensure the development team can
work on the most important requirements at the right time.
Find out more about the product backlog in Chapters 7 and 8.

Release planning During release planning, the scrum team discusses risks
to the release and how to mitigate those risks. Risk discus-
sions in the release planning meeting should be high-level
and relate to the release as a whole. Save risks to individual
requirements for the sprint planning meetings. Find out more
about release planning in Chapter 8.

Sprint planning During each sprint planning meeting, the scrum team
discusses risks to the specific requirements and tasks in
the sprint and how to mitigate those risks. Risk discussions
during sprint planning can be done in depth, but should
only relate to the current sprint. Find out more about sprint
planning in Chapter 8.

Sprint backlog The burndown chart on the sprint backlog provides a quick
view of the sprint status. This quick view helps the scrum
team manage risks to the sprint just as they arise and
minimize impact by addressing problems immediately. Find
out more about sprint backlogs and how burndown charts
show project status in Chapter 9.

22_9781118026243-ch15.indd 27222_9781118026243-ch15.indd 272 3/30/12 3:42 PM3/30/12 3:42 PM

287 Chapter 16: Building a Foundation

Figure 16-1:
The Agile

Roadmap to
Value.

 St
ag

e
1:

 V
IS

IO
N

De
sc

rip
tio

n:
 T

he
 g

oa
ls

 fo
r t

he
 p

ro
du

ct
an

d
its

 a
lig

nm
en

t w
ith

 th
e

co
m

pa
ny

’s
st

ra
te

gy
.

Ow
ne

r:
Pr

od
uc

t o
w

ne
r

Fr
eq

ue
nc

y:
 A

t l
ea

st
 a

nn
ua

lly

St
ag

e
5:

 D
AI

LY
 S

CR
UM

De
sc

rip
tio

n:
 T

o
es

ta
bl

is
h

an
d

co
or

di
na

te
pr

io
rit

ie
s

of
 th

e
da

y
Ow

ne
r:

Te
am

Fr
eq

ue
nc

y:
 D

ai
ly

St
ag

e
2:

 P
RO

DU
CT

 R
OA

DM
AP

De
sc

rip
tio

n:
 H

ol
is

tic
 v

ie
w

 o
f p

ro
du

ct
fe

at
ur

es
 th

at
 c

re
at

e
th

e
pr

od
uc

t v
is

io
n.

Ow
ne

r:
Pr

od
uc

t o
w

ne
r

Fr
eq

ue
nc

y:
 A

t l
ea

st
 b

ia
nn

ua
lly

St
ag

e
3:

 R
EL

EA
SE

 P
LA

N
N

IN
G

Hi
gh

es
t P

rio
rit

y
Fe

at
ur

es
 la

un
ch

JA
N

 F
EB

 M
AR

 A
PR

 M
AY

 J
UN

 J
UL

(S
ta

ge
s

1-
3

ar
e

be
st

 p
ra

ct
ic

es
 o

ut
si

de
 o

f c
or

e
Sc

ru
m

)

Hi
gh

 P
rio

rit
y

Fe
at

ur
es

 la
un

ch
De

sc
rip

tio
n:

 R
el

ea
se

 ti
m

in
g

fo
r

sp
ec

ifi
c

pr
od

uc
t f

un
ct

io
na

lit
y

Ow
ne

r:
Pr

od
uc

t o
w

ne
r

Fr
eq

ue
nc

y:
 A

t l
ea

st
 q

ua
rte

rly

Re
le

as
e

Pr
od

uc
t

[P
er

 th
e

Re
le

as
e

Pl
an

]

St
ag

e
7:

 S
PR

IN
T

RE
TR

OS
PE

CT
IV

E
De

sc
rip

tio
n:

 T
ea

m
 re

fin
em

en
t o

f
en

vi
ro

nm
en

t a
nd

 p
ro

ce
ss

es
 to

op
tim

ize
 e

ffi
ci

en
cy

Ow
ne

r:
Te

am
Fr

eq
ue

nc
y:

 A
t t

he
 e

nd
 o

f e
ac

h
sp

rin
t

1.
Ex

pe
ct

ed
2.

M
or

e
co

m
pl

ic
at

ed
3.

Le
ss

co
m

pl
ic

at
ed

4.
N

ot
pa

rti
ci

pa
tin

g
5.

 L
yi

ng
6.

 F
ili

ng
 fa

st

St
ag

e
6:

 S
PR

IN
T

RE
VI

EW
De

sc
rip

tio
n:

 D
em

on
st

ra
tio

n
of

w
or

ki
ng

 p
ro

du
ct

Ow
ne

r:
Pr

od
uc

t o
w

ne
r

Fr
eq

ue
nc

y:
 A

t t
he

 e
nd

 o
f e

ac
h

sp
rin

t

De
sc

rip
tio

n:
 E

st
ab

lis
h

sp
ec

ifi
c

ite
ra

tio
n

go
al

s
an

d
ta

sk
s.

Ow
ne

r:
Pr

od
uc

t o
w

ne
r a

nd
 T

ea
m

Fr
eq

ue
nc

y:
 A

t t
he

 s
ta

rt
of

 e
ac

h
sp

rin
t

St
ag

e
4:

 S
PR

IN
T

PL
AN

N
IN

G

Pr
ep

ar
at

io
n

Ex
ec

ut
io

n

Sprint

24
 h

ou
rs

1
- 4

 W
ee

ks

24_9781118026243-ch16.indd 28724_9781118026243-ch16.indd 287 3/30/12 3:43 PM3/30/12 3:43 PM

292 Part V: Ensuring Agile Success

When selecting your first agile project, look for an endeavor that has
these qualities:

 ✓ Appropriately important: Make sure the project you choose is impor-
tant enough to merit interest within your company. However, avoid the
most important project coming up; you want room to make and learn
from mistakes. See the note on the blame game in the later section
“Avoiding Pitfalls.”

 ✓ Sufficiently visible: Your pilot project should be visible to your orga-
nization’s key influencers, but don’t make it the most high-profile item
on their agenda. You will need the freedom to adjust to new processes;
critical projects may not allow for that freedom.

 ✓ Clear and containable: Look for a product with clear requirements and
a business group that can commit to defining and prioritizing those
requirements. Try to pick a project that has a distinct end point, rather
than one that can expand indefinitely.

 ✓ Not too large: Select a project that you can complete with no more than
two scrum teams working simultaneously to prevent too many moving
parts at once.

 ✓ Tangibly measurable: Pick a project that you know can show measur-
able value within sprints.

Figure 17-1:
Projects
that can

benefit from
agile

techniques.

Socially
Complicated

Technically
ComplicatedSimple

Close to

Agile’s benefits are most evident in these conditions

CERTAINTY

Far from

Chaos

AG
RE

EM
EN

T
Cl

os
e

to
Fa

r f
ro

m

25_9781118026243-ch17.indd 29225_9781118026243-ch17.indd 292 3/30/12 3:44 PM3/30/12 3:44 PM

293 Chapter 17: Being a Change Agent

 People need time to adjust to organizational changes of any type, not just agile
transitions. Studies have found that with large changes, companies and teams
will see dips in performance before they see improvements. Satir’s Curve,
shown in Figure 17-2, illustrates the process of teams’ excitement, chaos, and
finally adjustment to new processes.

After you’ve successfully run one agile project, you’ll have a foundation for
future successes.

Figure 17-2:
Satir’s
Curve.

Change introduced

Temporary drop
in performance

Team adjusts
to change

Time

Pe
rfo

rm
an

ce

Step 5: Identify success metrics
For your first agile project, identify a quantifiable way to recognize project
success. Using metrics will give you a way to instantly demonstrate success
to project stakeholders and your organization. Metrics provide specific goals
and talking points for sprint retrospectives and help set clear expectations
for the project team.

Here are some good areas to measure for your first project:

 ✓ How often did the scrum team meet sprint goals? Did the rate of sprint
goal success rise throughout the project?

 ✓ Did the number of defects in each sprint decrease throughout the project?

25_9781118026243-ch17.indd 29325_9781118026243-ch17.indd 293 3/30/12 3:44 PM3/30/12 3:44 PM

300 Part V: Ensuring Agile Success

Table 17-1 Common Agile Transition Problems and Solutions

Problem Description Potential Solution

Faux agile:
Cargo cult
agile and
double work
agile

Sometimes organizations
will say that they are “doing
agile.” They may go through
some of the practices used
on agile projects, but they
haven’t embraced the
principles of agile and are
ultimately creating waterfall
deliverables and products.
This is sometimes called
cargo cult agile and is a sure
path to avoiding the benefits
of agile techniques.

Trying to complete agile pro-
cesses in addition to water-
fall processes, documents,
and meetings is another faux
agile approach. Double work
agile results in quick project
team burnout. If you’re doing
twice the work, you aren’t
adhering to Agile Principles.

Insist on following one
process — an agile process.
Garner support from man-
agement to avoid non-agile
principles and practices.

Lack of
training

Investment in a hands-on
training class will provide
a quicker, better learning
environment than even the
best book, blog, or white
paper. Lack of training often
indicates an overall lack of
organizational commitment
to agile practices.

Keep in mind that training can
help scrum teams avoid many
of the mistakes on this list.

Build training into your imple-
mentation strategy. Giving
teams the right foundation
of skills is critical to success
and necessary at the start of
your agile transition.

25_9781118026243-ch17.indd 30025_9781118026243-ch17.indd 300 3/30/12 3:44 PM3/30/12 3:44 PM

301 Chapter 17: Being a Change Agent

Problem Description Potential Solution

Ineffective
product
owner

No role is more different than
traditional roles than that
of the product owner. Agile
project teams need a product
owner who is an expert on
business needs and priorities
and can work well with the
rest of the scrum team on
a daily basis. An absent or
indecisive product owner will
quickly sink an agile project.

Start the project with a
person who has the time,
expertise, and temperament
to be a good product owner.

Ensure the product owner
has proper training.

The scrum master can help
coach the product owner and
may try to clear roadblocks
preventing the product owner
from being effective. If remov-
ing impediments doesn’t
work, the scrum team should
insist on replacing the inef-
fective product owner with a
product owner — or at least
an agent — who can make
product decisions and help
the scrum team be successful.

Lack of auto-
mated testing

Without automated test-
ing, it may be impossible to
fully complete and test work
within a sprint. Manual test-
ing is a waste of time that
fast-moving scrum teams
don’t have.

You can find many low-cost,
open-source testing tools on
the market today. Look into the
right tools and make a com-
mitment as a development
team to using those tools.

Lack of
transition
support

Making the transition suc-
cessfully is difficult and far
from guaranteed. It pays to
do it right the first time with
people who know what they
are doing.

When you decide to move to
agile project management,
enlist the help of an agile
mentor — either internally
from your organization or
externally from a consulting
firm — who can support your
transition.

Process is easy, but people
are hard. It pays to invest in
professional transition sup-
port with an experienced
partner who understands
behavioral science and
organizational change.

(continued)

25_9781118026243-ch17.indd 30125_9781118026243-ch17.indd 301 3/30/12 3:44 PM3/30/12 3:44 PM

302 Part V: Ensuring Agile Success

Table 17-1 (continued)

Problem Description Potential Solution

Inappropriate
physical
environment

When scrum teams are not
collocated, they lose the
advantage of face-to-face
communication. Being in the
same building isn’t enough;
scrum teams need to sit
together in the same area.

If your scrum team is in the
same building but not sitting
in the same area, move the
team together.

Consider creating a room or
annex for the scrum team.

Try to keep the scrum team
area away from distracters,
such as the guy who can talk
forever or the manager who
needs just one small favor.

Before starting a project with
a dislocated scrum team, do
what you can to enlist local
talent. If you must work with
a dislocated scrum team,
take a look at Chapter 14
to see how to manage
dislocated teams.

Poor team
selection

Scrum team members who
don’t support agile processes,
who don’t work well with
others, or who don’t have
capacity for self-management
will sabotage a new agile
project from within.

When creating a scrum team,
consider how well potential
team members will enact the
Agile Principles. The keys are
versatility and a willingness
to learn.

Discipline
slips

Remember that agile proj-
ects still need requirements,
design, development, testing,
and releases. Doing that work
in sprints requires discipline.

You need more, not less,
discipline to deliver working
products in a short iteration.
Progress needs to be consis-
tent and constant.

The daily scrum helps
ensure progress is occurring
throughout the sprint.

Use the sprint retrospective
as an opportunity to reset
approaches to discipline.

25_9781118026243-ch17.indd 30225_9781118026243-ch17.indd 302 3/30/12 3:44 PM3/30/12 3:44 PM

303 Chapter 17: Being a Change Agent

Problem Description Potential Solution

Lack of
support for
learning

Scrum teams succeed as
teams and fail as teams;
calling out one person’s mis-
takes (known as the blame
game) destroys the learning
environment and destroys
innovation.

The scrum team can make
a commitment at the project
start to leaving room for learn-
ing and to accepting success
and failures as a group.

Diluting until
dead

Watering down agile pro-
cesses with old waterfall
habits erodes the benefits of
agile processes until those
benefits no longer exist.

When making process
changes, stop and consider
whether those changes sup-
port the Agile Manifesto and
the Agile Principles. Resist
changes that don’t work with
the manifesto and principles.
Remember to maximize work
not done.

As you may notice, many of these pitfalls are related to lack of organiza-
tional support, lack of training, and falling back on old project management
practices. If your company supports positive changes, if the project team is
trained, and if the scrum team makes an active commitment to upholding
agile values, you’ll have a successful agile transition.

Questions to Prevent Problems
The following list of questions helps you see warning signs and provide ideas
on what to do if problematic circumstances arise:

 ✓ Are you doing “scrum, but . . .”?

 ScrumBut is a known condition when organizations partially adopt agile
practices. Some agile purists say that ScrumBut is unacceptable; other
agile practitioners allow room for gradual growth into a new method-
ology. Having said that, beware of old practices that thwart the Agile
Principles, such as finishing sprints with incomplete code.

 ✓ Are you still documenting and reporting in the old way?

 If you’re still burning hours on hefty documentation and reporting, it’s a
sign that the organization has not accepted agile approaches for convey-
ing project status. Help managers understand how to use existing agile
reporting artifacts and quit doing double work!

25_9781118026243-ch17.indd 30325_9781118026243-ch17.indd 303 3/30/12 3:44 PM3/30/12 3:44 PM

321 Chapter 19: Ten Key Metrics for Agile Project Management

T
a

b
le

 1
9-

1
R

O
I

o
n

 a
 T

ra
d

it
io

n
a

l
P

ro
je

c
t

M
o

n
th

M
o

n
th

ly
 I

n
c

o
m

e
M

o
n

th
ly

 C
o

st
s

M
o

n
th

ly
 R

O
I

T
o

ta
l

In
c

o
m

e
T

o
ta

l C
o

st
s

T
o

ta
l

R
O

I

Ja
nu

ar
y

$0
$8

0,0
00

–$
80

,00
0

$0
$8

0,0
00

–$
80

,00
0

Fe
br

ua
ry

$0
$8

0,0
00

–$
80

,00
0

$0
$1

60
,00

0
–$

16
0,0

00
M

ar
ch

$0
$8

0,0
00

–$
80

,00
0

$0
$2

40
,00

0
–$

24
0,0

00
Ap

ril
$0

$8
0,0

00
–$

80
,00

0
$0

$3
20

,00
0

–$
32

0,0
00

M
ay

$0
$8

0,0
00

–$
80

,00
0

$0
$4

00
,00

0
–$

40
0,0

00
Ju

ne
 (p

ro
je

ct

la
un

ch
)

$1
00

,00
0

$8
0,0

00
$2

0,0
00

$1
00

,00
0

$4
80

,00
0

–$
38

0,0
00

Ju
ly

$1
00

,00
0

$0
$1

00
,00

0
$2

00
,00

0
$4

80
,00

0
–$

28
0,0

00
Au

gu
st

$1
00

,00
0

$0
$1

00
,00

0
$3

00
,00

0
$4

80
,00

0
–$

18
0,0

00
Se

pt
em

be
r

$1
00

,00
0

$0
$1

00
,00

0
$4

00
,00

0
$4

80
,00

0
–$

80
,00

0
Oc

to
be

r
(b

re
ak

-e
ve

n)
$1

00
,00

0
$0

$1
00

,00
0

$5
00

,00
0

$4
80

,00
0

$2
0,0

00

No
ve

m
be

r
$1

00
,00

0
$0

$1
00

,00
0

$6
00

,00
0

$4
80

,00
0

$1
20

,00
0

De
ce

m
be

r
$1

00
,00

0
$0

$1
00

,00
0

$7
00

,00
0

$4
80

,00
0

$2
20

,00
0

28_9781118026243-ch19.indd 32128_9781118026243-ch19.indd 321 3/30/12 3:45 PM3/30/12 3:45 PM

	Companion PDF Cover Document
	12
	14
	16
	22
	24
	27
	30
	36
	40
	44
	45
	46
	50
	56
	65
	66
	68
	71
	72
	75
	79
	80
	81
	84
	88
	89
	91
	93
	110
	112
	114
	116
	119
	122
	125
	129
	132
	133
	134
	135
	138
	139
	140
	142
	143
	145
	146
	152
	155
	156
	157
	159
	164
	166
	170
	171
	172
	176
	181
	182
	189
	191
	194
	196
	208
	218
	219
	220
	221
	222
	223
	229
	231
	232
	233
	239
	242
	244
	245
	246
	247
	250
	252
	253
	255
	260
	265
	266
	267
	268
	269
	270
	272
	287
	292
	293
	300
	301
	302
	303
	321

