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Figure 1-1:  The virtuous cycle of data mining focuses on business results, rather 
than just exploiting advanced techniques.

Transform data
into actionable information

using data mining techniques.

Act
on the information.

Identify
business opportunities
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can provide value.
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the learning cycle.
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Figure 1-2:  Data is never clean. It comes in many forms, from many sources both internal 
and external.
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These four groups are used for measuring the effectiveness 
of both the message and the modeling effort.

“Control” Group
Chosen at random;
receives message.
Response measures
message without model.

“Target” Group
Chosen by model;
receives message.
Response measures
message with model.

“Holdout” Group
Chosen at random;
receives no message.
Response measures
background response.

“Modeled Holdout” Group
Chosen by model;
receives no message.
Response measures
model without message.

Picked by Model

M
es

sa
ge

NO

NO

YES

YE
S

Impact of model on group
getting message

Impact of
message on
group with
good model
scores
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This chart readily shows the difference in response to 
determine whether the treatment works and whether the 
modeling works.
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Table 1-1: Data Mining Differs from Typical Operational Business Processes

TYPICAL OPERATIONAL SYSTEM DATA MINING SYSTEM

Operations and reports on 
historical data

Analysis on historical data often applied 
to most current data to determine future 
actions

Predictable and periodic fl ow of 
work, typically tied to calendar 

Unpredictable fl ow of work depending on 
business and marketing needs

Focus on individual items, one at a 
time (the needle in the haystack)

Focusing on larger groups at one time, trying 
to make sense of the haystack

Limited use of enterprise-wide data The more data, the better the results 
(generally)

Focus on line of business (such 
as account, region, product code, 
minutes of use, and so on), not on 
customer

Focus on actionable entity, product, 
customer, sales region

Response times often measured in 
seconds/milliseconds (for interac-
tive systems) while waiting weeks/
month for reports

Iterative processes with response times 
often measured in minutes or hours

System of record for data Copy of data

Descriptive and repetitive Creative
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Figure 2-1: The customer lifecycle progresses through different stages.
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Figure 2-2:  (Simplified) customer experience for newspaper subscribers includes several 
different types of interactions.
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Figure 2-3:  These response curves for three direct mail campaigns show that 80 percent 
of the responses came within five to six weeks.
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Figure 2-4:  The echo effect may artificially under- or overestimate the performance of 
channels, because customers inspired by one channel may be attributed to another.
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Peaks and troughs often occur at about 
the same time for these two channels
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New sales come in through many
channels.

Only sales with verifiable addresses
and credit cards become orders.

Only orders with routable addresses
become subscriptions.

Only some subscriptions are paid. Paid
subscription
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Figure 2-5:  The customer activation process funnel eliminates responders at each step of 
the activation process.
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Table 2-1: Calculating Fitness Scores for Individuals by Comparing Them along Each 
Demographic Measure

READER-
SHIP

YES 
SCORE

NO 
SCORE AMY BOB

AMY 
SCORE

BOB 
SCORE

College educated 58% 0.58 0.42 YES NO 0.58 0.42

Prof or exec 46% 0.46 0.54 YES NO 0.46 0.54

Income >$75K 21 % 0.21 0.79 YES NO 0.21 0.79

Income >$100K   7% 0.07 0.93 NO NO 0.93 0.93

Total 2.18 2.68
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Table 2-2: Calculating Scores by Taking the Proportions in the Population into Account

YES NO

READERSHIP U.S. POP. INDEX READERSHIP U.S. POP. INDEX

College 
educated

58% 20.3% 2.86 42%  79.7% 0.53

Professional 
or executive

46%  19.2% 2.40 54% 80.8% 0.67

Income 
>$75K

21%   9.5% 2.21 79% 90.5% 0.87

Income 
>$100K

  7%   2.4% 2.92 93%  97.6% 0.95
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Census Tract 189
Edu College+ 19.2%
Occ Prof+Exec 17.8%
HHI $75K+  5.0%
HHI $100K+  2.4%

Census Tract 122
Edu College+ 66.7%
Occ Prof+Exec 45.0%
HHI $75K+  58.0%
HHI $100K+  50.2%

Census Tract 129
Edu College+ 44.8%
Occ Prof+Exec 36.5%
HHI $75K+  14.8%
HHI $100K+  7.2%
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Tract 189 Goal Tract Fitness
Edu College+ 19.2% 61.3% 0.31
Occ Prof+Exec 17.8% 45.5% 0.39
HHI $75K+ 5.0% 22.6% 0.22
HHI $100K+ 2.4% 7.4% 0.32
Overall Advertising Fitness 0.31

Tract 122 Goal Tract Fitness
Edu College+ 66.7% 61.3% 1.00
Occ Prof+Exec 45.0% 45.5% 0.99
HHI $75K+ 58.0% 22.6% 1.00
HHI $100K+ 50.2% 7.4% 1.00
Overall Advertising Fitness 1.00

Tract 129 Goal Tract Fitness
Edu College+ 44.8% 61.3% 0.73
Occ Prof+Exec 36.5% 45.5% 0.80
HHI $75K+ 14.8% 22.6% 0.65
HHI $100K+ 7.2% 7.4% 0.97
Overall Advertising Fitness 0.79

Figure 2-6:  Example of calculating readership fitness for three 
census tracts in Manhattan.
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Figure 2-7:  A cumulative gains or concentration chart shows the benefit of using a model.
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Table 2-3: Profi t/Loss Matrix for the Simplifying Assumptions Corporation

MAILED RESPONDED

YES   NO

YES $44 –$1

NO $0   $0
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Table 2-4: Lift and Cumulative Gains by Decile

PENETRATION GAINS
CUMULATIVE 

GAINS LIFT

    0%   0%     0% 0.000

  10% 30%   30% 3.000

  20% 20%   50% 2.500

  30% 15%   65% 2.167

  40% 13%   78% 1.950

  50%   7%   85% 1.700

  60%   5%   90% 1.500

  70%   4%   94% 1.343

  80%   4%   96% 1.225

  90%   2% 100% 1.111

100%   0% 100% 1.000
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Figure 2-8: Campaign profitability as a function of penetration.
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Figure 2-9: A 20 percent variation in response rate, cost, and revenue per responder has 
a large effect on the profitability of a campaign.
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Home Equity LOC 
Propensity

Money Market Savings 
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Regular Savings 
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Brokerage
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Regular Savings 
Model

Home Equity 
LOC Model

Figure 2-10:  Comparing scores from multiple models to decide which offers will be 
shown to customers.
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Figure 2-11:  As the response rate to an acquisition campaign goes 
down, the cost per customer acquired goes up.
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Figure 3-1:  Does declining usage in month 8 predict attrition in month 9?
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$38,000

Figure 3-1:  Does declining usage in month 8 predict attrition in month 9?

Figure 3-2 shows another example of confusion caused by aggregation. 
Sales appear to be down in October compared to August and September. The picture 
comes from a business that has sales activity only on days when the fi nancial 
markets are open. Because of the way that weekends and holidays fell in 2003, 
October had fewer trading days than August and September. That fact alone 
accounts for the entire drop-off in sales. 

$44,000

$43,000

$42,000

$41,000

$40,000

$39,000

August September October

Figure 3-2:  Did sales really drop off in October?
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Figure 3-3:  Customers who buy more product types spend more money.
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Figure 3-4:  Models take an input and produce an output.

ModelInputs Output
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Figure 3-5:  Individual propensity scores for each product are compared to determine 
the best offer.
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A two-stage model for the expected value of a contribution

CustomerID Response Contribution X1 X2 X3
292129 0 A 39,220 1
292130 0 A 39,749 1
292134 0 C 40,052 1
197549 0 A 39,485 1
292137 0 A 39,749 1
291800 0 A 39,610 1
292138 0 A 39,749 0
332806 0 A 39,860 0
292140 0 A 39,686 1
347807 1 $40 C 40,139 0
292141 0 A 39,749 1
292143 1 $30 C 40,027 0
409542 0 A 40,050 0
292848 0 C 40,012 1
292850 0 C 40,151 1
292851 0 A 39,750 0
292852 0 C 39,997 1
292853 0 A 39,750 1
292857 0 A 39,750 1
292859 1 $30 A 39,994 1
292860 0 A 39,750 0
292861 0 A 39,750 0
292862 1 $30 C 39,859 0
292863 0 C 39,877 1
292864 1 $40 C 40,071 1
292868 0 A 39,750 0
403246 0 A 40,035 0
292869 1 $30 D 40,132 0
292870 0 C 39,788 0
292871 0 A 39,750 1
292872 0 A 39,750 1
292873 0 C 39,997 1
292874 1 $40 C 40,150 1
292878 0 A 39,750 1
292879 1 $40 C 40,132 0
292880 1 $30 C 39,859 1
292881 0 C 39,879 0
24583 0 A 38,966 0

292884 0 A 39,750 1
126612 1 $40 A 40,016 0
292886 0 A 39,288 1
292887 0 A 39,750 1
292888 1 $40 A 40,113 0
292889 0 C 39,795 0
390095 0 A 40,000 1
292893 0 A 39,462 1
292894 0 A 40,118 1
292964 0 D 40,138 0
292897 1 $30 C 39,859 1
292900 0 A 39,750 1
292901 0 C 39,808 1
292902 1 $30 C 39,859 0
292905 0 A 39,750 1
292908 0 A 39,750 0
292909 0 A 39,750 1
292911 0 A 39,750 1
292913 0 C 39,798 1
292914 1 $30 D 40,132 0
292915 0 A 39,750 0
292916 0 C 39,812 0
292917 0 A 39,750 0
292919 0 A 39,750 1
292920 0 D 40,114 0

Response model based on all rows
of training data:

Contribution model based on
responders:

Both models are applied to all rows
of a table describing potential
contributors. The expected
contribution is the product of the
two model results:

P(response) = f(X1,X2,X3)

E($|response) = g(X1,X2,X3)

E($) = E*P
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Table 3-1: What Techniques for Which Tasks?

TASK BEST FIT ALSO CONSIDER

Classifi cation 
and prediction

Decision trees, logis-
tic regression, neural 
networks

Similarity models, table look-up 
models, nearest neighbor models, 
naïve Bayesian models

Estimation Linear regression, neural 
networks

Regression trees, nearest neighbor 
models

Binary response Logistic regression, deci-
sion trees

Similarity models, table look-up 
models, nearest neighbor models, 
naïve Bayesian models

Finding clusters 
and patterns

Any of the clustering 
algorithms

Association rules
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Figure 4-1:  This example shows both a histogram (as a vertical bar chart) and 
cumulative proportion (as a line) on the same chart for stop reasons associated with a 
particular marketing effort. 
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Figure 4-2:  This chart shows two time series plotted with different vertical scales. The 
dark line is for overall stops; the light line for pricing related stops shows the impact of a 
change in pricing strategy at the end of January.
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Figure 4-3:  Standardized values allow you to compare different groups on the same chart 
using the same scale; this chart shows overall stops and price increase–related stops.
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The probability density function for the normal distribution looks like the familiar 
bell-shaped curve.
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The (cumulative) distribution function for the normal distribution has an S-shape. 
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Figure 4-4:  The tail of the normal distribution answers the question: “What is the probability 
of getting a value of z or greater?”
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Figure 4-5:  Based on the same data from Figures 4-2 and 4-3, this chart shows the 
signed confidence (q-values) of the observed value based on the average and standard 
deviation. This sign is positive when the observed value is too high, negative when it is 
too low.
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Table 4-1: Cross-tabulation of Starts by County and Channel

COUNTS FREQUENCIES

COUNTY TM DM OTHER TOTAL TM DM OTHER TOTAL

Bronx  3,212      413  2,936 6,561   2.5% 0.3%  2.3%     5.1%

Kings   9,773  1,393  11,025   22,191   7.7%  1.1%   8.6%  17.4%

Nassau   3,135  1,573 10,367  15,075   2.5% 1.2%  8.1%   11.8%

New York   7,194  2,867 28,965  39,026   5.6% 2.2% 22.7% 30.6%

Queens   6,266  1,380 10,954  18,600  4.9%  1.1%   8.6%   14.6%

Richmond      784  277   1,772    2,833   0.6% 0.2%   1.4%  2.2%

Suffolk     2,911  1,042    7,159   11,112   2.3% 0.8%   5.6%     8.7%

Westchester     2,711  1,230    8,271   12,212 2.1% 1.0%  6.5%     9.6%

Total 35,986 10,175 81,449 127,610 28.2% 8.0% 63.8% 100.0%
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Visualizing cross-tabulations is challenging because there is a lot of data 
to present, and some people do not easily interpret complicated 
pictures. Figure 4-6 shows a three-dimensional column chart for the counts 
shown in the table. This chart shows that the “OTHER” channel is quite high 
for Manhattan (New York County). 
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Figure 4-6:  A surface plot provides a visual interface for cross-tabulated data.
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Figure 4-7:  A time chart can also be used for continuous values; this one 
shows the range and average for order amounts each day. 
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Figure 4-8:  Statistics has proven that actual response rate on a population is very close 
to a normal distribution whose average is the measured response on a sample and whose 
standard deviation is the standard error of proportion (SEP).
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SEP = ÷( p * (

N

1 – p) )
Equation 1
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Table 4-2: The 95 Percent Confidence Interval Bounds for the Champion Group for 
Different Response Rates

RESPONSE SIZE SEP
95% 
CONF 95% CONF * SEP LOWER UPPER

4.5% 900,000 0.0219% 1.96 0.0219%*1.96=0.0429% 4.46% 4.54%

4.6% 900,000 0.0221% 1.96 0.0221%*1.96=0.0433% 4.56% 4.64%

4.7% 900,000 0.0223% 1.96 0.0223%*1.96=0.0437% 4.66% 4.74%

4.8% 900,000 0.0225% 1.96 0.0225%*1.96=0.0441% 4.76% 4.84%

4.9% 900,000 0.0228% 1.96 0.0228%*1.96=0.0447% 4.86% 4.94%

5.0% 900,000 0.0230% 1.96 0.0230%*1.96=0.0451% 4.95% 5.05%

5.1% 900,000 0.0232% 1.96 0.0232%*1.96=0.0455% 5.05% 5.15%

5.2% 900,000 0.0234% 1.96 0.0234%*1.96=0.0459% 5.15% 5.25%

5.3% 900,000 0.0236% 1.96 0.0236%*1.96=0.0463% 5.25% 5.35%

5.4% 900,000 0.0238% 1.96 0.0238%*1.96=0.0466% 5.35% 5.45%

5.5% 900,000 0.0240% 1.96 0.0240%*1.96=0.0470% 5.45% 5.55%

Response rates vary from 4.5% to 5.5%. The bounds for the 95% confidence level are calculated using1.96 
standard deviations from the average.
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SEDP = ÷ ( p1 * (1 – p1) +
 p2 * (1 – p2) )

N1 N2
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Table 4-3: Z-scores and P-values for Difference Between Champion and Challenger 
Response Rates, with 900,000 contacts for Champion and 100,000 for Challenger

RESPONSE DIFFERENCE OF PROPORTIONS

CHAMPION CHALLENGER DIFFERENCE SEDP Z-VALUE P-VALUE

5.0% 4.5% 0.5% 0.07% 6.9 0.0%

5.0% 4.6% 0.4% 0.07% 5.5 0.0%

5.0% 4.7% 0.3% 0.07% 4.1 0.0%

5.0% 4.8% 0.2% 0.07% 2.8 0.6%

5.0% 4.9% 0.1% 0.07% 1.4 16.8%

5.0% 5.0% 0.0% 0.07% 0.0 100.0%

5.0% 5.1% -0.1% 0.07% -1.4 16.9%

5.0% 5.2% -0.2% 0.07% -2.7 0.6%

5.0% 5.3% -0.3% 0.07% -4.1 0.0%

5.0% 5.4% -0.4% 0.07% -5.5 0.0%

5.0% 5.5% -0.5% 0.07% -6.9 0.0%
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Table 4-4: The 95 Percent Confi dence Interval for Difference Sizes of the Challenger Group

RESPONSE SIZE SEP 95% CONF LOWER UPPER WIDTH

5.0%         1,000 0.6892% 1.96 3.65% 6.35% 2.70%

5.0%         5,000 0.3082% 1.96 4.40% 5.60% 1.21%

5.0%       10,000 0.2179% 1.96 4.57% 5.43% 0.85%

5.0%      20,000 0.1541% 1.96 4.70% 5.30% 0.60%

5.0%      40,000 0.1090% 1.96 4.79% 5.21% 0.43%

5.0%      60,000 0.0890% 1.96 4.83% 5.17% 0.35%

5.0%      80,000 0.0771% 1.96 4.85% 5.15% 0.30%

5.0%    100,000 0.0689% 1.96 4.86% 5.14% 0.27%

5.0%    120,000 0.0629% 1.96 4.88% 5.12% 0.25%

5.0%    140,000 0.0582% 1.96 4.89% 5.11% 0.23%

5.0%    160,000 0.0545% 1.96 4.89% 5.11% 0.21%

5.0%    180,000 0.0514% 1.96 4.90% 5.10% 0.20%

5.0%    200,000 0.0487% 1.96 4.90% 5.10% 0.19%

5.0%    500,000 0.0308% 1.96 4.94% 5.06% 0.12%

5.0% 1,000,000 0.0218% 1.96 4.96% 5.04% 0.09%

c04.indd 126c04.indd   126 3/16/2011 2:01:38 PM3/16/2011   2:01:38 PM

55



       0.2%
 = ÷ ( p * (1 – p) 

+
 (p + d) * (1 – p – d) )1.96                    N N

0.102% = ÷ ( 5% * 95% 
+

 5.2% * (94.8%) ) = ÷ ( 0.0963 )N N N

N = ((5%*95%) + (5.2%*94.8%))

             (0.00102)2

= 0.096796
   (0.00102)2

= 92,963
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Table 4-5: The Champion-Challenger Data Laid Out for the Chi-Square Test

 GROUP RESPONDERS NON-RESPONDERS TOTAL
RESPONSE 

RATE

Champion 43,200 856,800   900,000 4.80%

Challenger   5,000   95,000   100,000 5.00%

Total 48,200  951,800 1,000,000 4.82%
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Table 4-6: Calculating the Expected Values and Deviations from Expected for the Data 
in Table 4-5

ACTUAL RESPONSE EXPECTED RESPONSE DEVIATION

YES NO TOTAL YES NO YES NO

Champion 43,200 856,800  900,000 43,380 856,620 –180    180

Challenger    5,000    95,000    100,000   4,820   95,180   180 –180

Total 48,200 951,800 1,000,000 48,200 951,800

Overall 
Proportion   4.82%    95.18%
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Chi-square(x) = 
(x – expected(x))2

expected(x) 
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Figure 4-9:  The chi-square distribution depends on the degrees of freedom. In general, 
though, it starts low, peaks early, and gradually descends.
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Table 4-7:  Chi-Square Calculation for Difference of Proportions Example in Table 4-4

CHALLENGER CHAMPION CHALLENGER EXP. CHAMPION EXP.

RESP
NON-
RESP RESP

NON-
RESP

OVERALL 
RESP RESP

NON-
RESP RESP

NON- 
RESP

5,000 95,000 40,500 859,500 4.55% 4,550 95,450 40,950 859,050

5,000 95,000 41,400 858,600 4.64% 4,640 95,360 41,760 858,240

5,000 95,000 42,300 857,700 4.73% 4,730 95,270 42,570 857,430

5,000 95,000 43,200 856,800 4.82% 4,820 95,180 43,380 856,620

5,000 95,000 44,100 855,900 4.91% 4,910 95,090 44,190 855,810

5,000 95,000 45,000 855,000 5.00% 5,000 95,000 45,000 855,000

5,000 95,000 45,900 854,100 5.09% 5,090 94,910 45,810 854,190

5,000 95,000 46,800 853,200 5.18% 5,180 94,820 46,620 853,380

5,000 95,000 47,700 852,300 5.27% 5,270 94,730 47,430 852,570

5,000 95,000 48,600 851,400 5.36% 5,360 94,640 48,240 851,760

5,000 95,000 49,500 850,500 5.45% 5,450 94,550 49,050 850,950

CHALLENGER
CHALLENGER 
CHI-SQUARE

CHAMPION  
CHI-SQUARE CHI-SQUARE

DIFF. 
PROP.

RESP
NON-
RESP RESP

NON 
RESP RESP

NON 
RESP VALUE P-VALUE P-VALUE

5,000 95,000 44.51 2.12 4.95 0.24   51.81     0.00%     0.00%

5,000 95,000 27.93 1.36 3.10 0.15  32.54     0.00%     0.00%

5,000 95,000 15.41 0.77 1.71 0.09  17.97     0.00%     0.00%

5,000 95,000   6.72 0.34 0.75 0.04    7.85      0.51%     0.58%

5,000 95,000   1.65 0.09 0.18 0.01    1.93   16.50%    16.83%

5,000 95,000  0.00 0.00 0.00 0.00   0.00 100.00% 100.00%

5,000 95,000   1.59 0.09 0.18 0.01    1.86    17.23% 16. 91%

5,000 95,000  6.25 0.34 0.69 0.04    7.33     0.68%     0.60%

5,000 95,000 13.83 0.77 1.54 0.09 16.23      0.01%     0.00%

5,000 95,000 24.18 1.37 2.69 0.15 28.39     0.00%     0.00%

5,000 95,000 37.16 2.14 4.13 0.24 43.66     0.00%     0.00%
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Table 4-8: Chi-Square Calculation for Counties and Channels Example

EXPECTED DEVIATION CHI-SQUARE

COUNTY TM DM OTHER TM DM OTHER TM DM OTHER

Bronx   1,850.2   523.1    4,187.7  1,362 –110 –1,252 1,002.3  23.2 374.1

Kings   6,257.9  1,769.4   14,163.7  3,515 –376 –3,139 1,974.5   80.1 695.6

Nassau   4,251.1 1,202.0    9,621.8 –1,116   371      745   293.0 114.5   57.7

New York 11,005.3    3,111.7 24,908.9 –3,811 –245   4,056 1,319.9  19.2 660.5

Queens   5,245.2   1,483.1  11,871.7    1,021 –103  –918   198.7    7.2   70.9

Richmond   798.9     225.9   1,808.2  –15     51  –36       0.3   11.6     0.7

Suffolk   3,133.6    886.0    7,092.4 –223   156        67      15.8   27.5     0.6

Westchester 3,443.8     973.7    7,794.5 –733   256      477   155.9 67.4    29.1
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Table 4-9: Chi-Square Calculation for Bronx and TM

EXPECTED DEVIATION CHI-SQUARE

COUNTY TM NOT_TM TM NOT_TM TM NOT_TM

Bronx   1,850.2   4,710.8   1,361.8 –1,361.8 1,002.3 393.7

Not 
Bronx

34,135.8 86,913.2 –1,361.8   1,361.8      54.3   21.3
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Table 4-10: Estimated P-Value for Each Combination of County and Channel, without 
Correcting for Number of Comparisons

COUNTY TM DM OTHER

Bronx   0.00% 0.00%   0.00%

Kings   0.00% 0.00%   0.00%

Nassau   0.00% 0.00%   0.00%

New York   0.00% 0.00%   0.00%

Queens   0.00% 0.74%   0.00%

Richmond 59.79% 0.07% 39.45%

Suffolk    0.01% 0.00% 42.91%

Westchester   0.00% 0.00%   0.00%
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Figure 4-10:  This chart shows the signed confidence values for each county and region 
combination; the preponderance of values near 100% and –100% indicate that observed 
differences are statistically significant.
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Figure 4-11: This screen shot shows an example of a site using MyBuys recommendations.
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Figure 4-12:  The daily revenue for both sides of the A/B tests is usually within the 95% 
confidence bounds and does not obviously favor one side of the test over the other.
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Figure 4-13:  Using dollar amounts provides more information about what is happening over 
time, in terms of sales. The data here is similar to Figure 4-12, but for a shorter time frame. 
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standard deviation
SEM �

 sample size
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Figure 4-14: A time series of product sales and inventory illustrates the problem of 
censored data.
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Figure 5-1:  This is an example of a two-step model for estimating response amounts. 
The first model predicts response; the second estimates the amount of the response. 
The product is the expected response amount.

Task: Estimate
responseperson, the
probability a person will
respond to the mailing.

Task: Estimate value of
response, dollarsperson.

Output
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input 1
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input 4
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Figure 5-2:  A cross-sell model for a handful of options consists 
of a separate model for each option along with a decision 
function for choosing the optimal option.
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Figure 5-3:  An incremental response model can be approximated using two different 
models — one to estimate the response with no intervention and the other to estimate the 
response with the intervention.
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Figure 5-4:  Profiling models and prediction models differ only in the temporal relationship 
of the target variable to the input variables.
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Figure 5-5:  Directed data mining is not a linear process.
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Stratified Sampling
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When an outcome is rare, there are two ways to create a balanced sample.
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Figure 5-6:  Data from the past mimics data from the past, present, and future.

c05.indd 175c05.indd   175 3/8/2011 3:09:09 PM3/8/2011   3:09:09 PM

77



January February March April May

Model Building Time

June July August September

7 6 5 4 3 2 1 Target
Month

7 6 5 4 3 2 1 Target
Month

October

Model Scoring Time

Figure 5-7:  Time when the model is built compared to time when the model is used.
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Figure 5-8:  A confusion matrix cross-tabulates predicted
outcomes with actual outcomes.
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Figure 5-9:  The top part of this chart shows the cumulative gains for a binary response 
model. The lower chart shows the lift (cumulative ratio by decile). A lift chart starts high 
and descends to 1.
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Figure 5-10:  A profitability curve translates model results into dollars and cents, making it 
possible to optimize the model based on financial gain. In this case, maximum profitability 
occurs when contacting the top 40% of people chosen by the model.
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Figure 5-11:  An ROC chart looks very similar to a cumulative gains chart, but the horizontal 
axis is the proportion of false positives, rather than the proportion of the overall population.
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Table 5-1: Errors cancel each other out (the sum of the error column is zero)

TRUE VALUE ESTIMATED VALUE ERROR

127 132 –5

  78   76   2

120 122 –2

130 129    1

  95    91    4
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Figure 5-12:  This example of a Score Ranking Chart from SAS Enterprise Miner compares 
the average values of the target variable with the average value of the prediction, by decile 
(or other grouping).
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Figure 5-13:  When you deploy a campaign, four different 
treatment groups exist. Comparisons between the groups yield 
different insights.
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Figure 6-1:  This scatter plot is based on the latitude and longitude of towns in New York 
state; the shading is based on the proportion of the town with wood-burning stoves.
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Figure 6-2:  The percentage of households in a town heated by wood ranges from near 
50 percent to 0.
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Figure 6-3:  Removing towns in the middle of the range sharpens the contrast between 
high penetration and low penetration.
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Table 6-1: Variables with signifi cantly different averages in high- and low-penetration towns.

WORKING  IN 
AGRICULTURE

MULTI-FAMILY 
HOMES

MEDIAN HOME 
VALUE

Low Penetration 1.4% 26.3% $136,296

High Penetration 6.6%   4.7%   $67,902
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Table 6-2: Averages and standard deviations for the selected variables.

WORKING IN 
AGRICULTURE

MULTI-FAMILY 
HOMES

MEDIAN 
HOME VALUE

Average   3.9% 14.2% $95,256

Standard Deviation   3.9% 14.8% $70,754

Ideal 10.0%   0.0% $60,000
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Figure 6-4:  As distance from the ideal increases, penetration quickly drops to zero.
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Figure 6-5:  Each of the three RFM dimensions has been partitioned into quintiles to 
form an RFM cube with 125 cells.

c06.indd 207c06.indd   207 3/8/2011 3:09:40 PM3/8/2011   3:09:40 PM

92



P(A|B) = P(B|A)
 P(A)

P(B)
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probability 1
odds � � �1 � 

1 � probability 1 � probability

1
probability � 1 �

1 � odds
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Figure 6-6:  The scatter plot shows the relationship between tenure and total amount paid.
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y = $0.56x − $10.34
R2 = 0.87
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Figure 6-7:  The best-fit line minimizes the square of the vertical distance from the 
observations to the line.
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Figure 6-8:  There are about as many positive as negative residuals and they do not show 
any strong patterns. 
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Y � b0 � b1X1

Equation 12

Y � b0 � b1X1 � e 

Equation 13
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Figure 6-9:  R2 and trend are two ways of characterizing the best-fit line. A high R2 value 
implies that the points are very close to the line.
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Y � b0 � b1X1 � b2X2 � ... � bnXn
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Y � b0 � b1X1
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Figure 6-10:  The height of the bars shows the relative importance of the inputs.
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0

Many of the newspaper’s subscription sales are made through outbound 
telemarketing. The call center contacts a list of prospects (selected by a data 
mining model, of course) and some of them agree to sign up for a 
subscription. Shortly thereafter they begin receiving the paper, and along 
with it, their first bill. Some new subscribers never get around to paying the fi 
rst bill, depriving the newspaper of revenue. After a while, these non-paying 
subscribers are cut off. Of course, new customers also start who do pay and 
become good customers in the long term. For the fi rst several weeks, though, 
there is a relatively high probability that customers will not pay. 

The scatter plot shows tenure versus the payment fl ag. At small 
tenures, there are payers and non-payers. As tenure increases, the 
probability of hav-ing made a payment goes up. After about 70 days, the 
probability is at or very close to one. Anyone who has not paid has been 
dropped from the subscriber rolls by then. 

The target can be represented as “0” for customers who never pay and “1” 
for customers who do, so a best-fi t line always exists. That does not mean 
the best-fi t line is a good model. In this case, the best-fi t line in Figure 6-11 
has an R2 value of 0.15. Worse, after about 400 days, the probability estimate 
is greater than 1. It continues increasing indefi nitely as tenure goes up. 
That is the nature of a straight line; it goes on forever with no maximum or 
minimum. 

1

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

y = 0.0010x + 0.6187
R2 = 0.1500

Figure 6-11:  A linear regression model does a poor job of modeling the probability that 
a subscriber has ever paid.
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Figure 6-12:  A comparison of odds and log odds. The log odds function is symmetrical 
around 0 and goes from negative infinity to positive infinity.

c06.indd 229c06.indd   229 3/8/2011 3:09:42 PM3/8/2011   3:09:42 PM

104



ln    p ) (  �p � b0 � b1X.

1 
. p � 

         1 � e� (b0 � b1x)

Equation 16

Equation 17
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Figure 6-13:  The logistic function goes from 0 to 1 just like a probability.
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Figure 6-1 4:  Logistic regression does a much better job of estimating the probability that 
a subscriber has paid.
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Figure 6-13:  The logistic function goes from 0 to 1 just like a probability.

The logistic function itself has a characteristic S shape. The parameters of 
the model shift the curve left or right and stretch or compress the curve. This 
function has some nice properties. Around 0, the slope is about 45 percent 
and the curve approximates a line — from about the region of –1 to 1. Beyond 
this range, it gradually fl attens out, never getting above 1 or below 0. These 
proper-ties make the logistic a natural curve for expressing probabilities.

In Figure 6-14, the logistic function is used to estimate the probability that a 
subscriber has paid based on tenure. For early tenures, the estimate is low, but 
not 0; some people pay right away. The probability of having paid climbs 
steeply and by about 120 days is indistinguishable from 1. Unlike linear 
regression, logistic regression provides a good fi t to the observed data.
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Figure 7-1:  A decision tree.
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Figure 7-2:  A regression tree for average order size as a function of recency and frequency.
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Figure 7-3:  The tree puts the records into rectangular boxes.
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Good Split

Poor SplitPoor Split

Figure 7-4:  A good split increases purity for all the children.
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Figure 7-5:  A good split on a binary categorical variable increases purity.
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Figure 7-6:  For a binary target, the Gini score varies from 0.5 when 
there is an equal number of each class to 1 when all records are in 
the same class.
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Figure 7-7:  Entropy goes from 0 for a pure population to 1 when there is an equal 
number of each class.
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�1 * (P(circle)log2P(circle) � P(triangle)log2P(triangle) )

Equation 18

�1 * (0.875 log2(0.875) � 0.125 log2(0.125)) � 0.544

Equation 19
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�1 * (0.200 log2(0.200) � 0.800 log2(0.800)) � 0.722
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Table 7-1: Contingency Table for Split Evaluation

RESPONSE = 0 RESPONSE = 1

Left Child # of 0s on left # of 1s on left

Right Child # of 0s on right # of 1 on right
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Figure 7-8:  Chi-square is 0 when the sample distribution is the same as the population’s.
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Champion-Challenger comparison.
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Figure 7-9:  Inside a complex tree are simpler, more stable trees.
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AE(T) = E(T) + �leaf_count(T)
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COMPARING MISCLASSIFICATION RATES ON TRAINING 
AND VALIDATION SETS

The error rate on the validation set should be larger than the error rate on the 
training set, because the training set was used to build the rules in the model. 
A large difference in the misclassifi cation error rate, however, is a symptom 
of an unstable model. This difference can show up in several ways as shown 
by the following three graphs. The graphs represent the percent of records 
correctly classifi ed by the candidate models in a decision tree. Candidate sub-
trees with fewer nodes are on the left; those with more nodes are on the right.

As expected, the fi rst chart shows the candidate trees performing better 
and better on the training set as the trees have more and more nodes — the 
training process stops when the performance no longer improves. On the 
validation set, however, the candidate trees reach a peak and then the perfor-
mance starts to decline as the trees get larger. The optimal tree is the one that 
works best on the validation set, and the choice is easy because the peak is 
well-defi ned.

This chart shows a clear inflection point in the graph of the percent correctly classi-
fied in the validation set.

Sometimes, though, there is no clear demarcation point. That is, the per-
formance of the candidate models on the validation set never quite reaches a 
maximum as the trees get larger. In this case, the pruning algorithm chooses 
the entire tree (the largest possible subtree), as shown.

 PMPM
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In this chart, the percent correctly classified in the validation set levels off early and 
remains far below the percent correctly classified in the training set.
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The fi nal example is perhaps the most interesting, because the results on 
the validation set become unstable as the candidate trees become larger. The 
cause of the instability is that the leaves are too small. In this tree, there is 
an example of a leaf that has three records from the training set and all three 
have a target value of 1 — a perfect leaf. However, in the validation set, the 
one record that falls there has the value 0. The leaf is 100 percent wrong. As 
the tree grows more complex, more of these too-small leaves are included, 
resulting in the instability shown:

In this chart, the percent correctly classified on the validation set decreases with the 
complexity of the tree and eventually becomes chaotic.
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The last two fi gures are examples of unstable models. The simplest way to 
avoid instability of this sort is to ensure that leaves are not allowed to become 
too small.
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Figure 7-10:  Pruning chooses the tree whose miscalculation rate is minimized on the 
validation set. 

c07.indd 266c07.indd   266 3/8/2011 3:10:28 PM3/8/2011   3:10:28 PM

124



Figure 7-11:  An unstable split produces very different distributions on the training and 
validation sets.
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Figure 7-12:  This tree with multiway splits does not perform as well as the binary 
tree in Figure 7-1.
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Figure 7-13:  The upper-left and lower-right quadrants are easily classified, whereas the 
other two quadrants must be carved into many small boxes to approximate the boundary 
between regions.
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A one-dimensional line separating points on a two-dimensional plane.
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On the plane, boundary between the two classes is not a straight line.
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After application of the kernel function, the two classes are easily separated.

x squared

x squared y s
qu

are
d

y s
quared

0
10

7.5

5

2.5

0

5.0

−5.0

−10.0
−10.0

10.0

0.0

−5.0

5.0

0

2.5

5

7.5

7.5

7.5

10

5
5

2.5

2.5

0

0

0.0

xy

xy

c07.indd 275c07.indd   275 3/8/2011 3:10:29 PM3/8/2011   3:10:29 PM

Kernel Function

131



field field

field field

field field

field field

field field

field field

field field

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 7 -14: A decision tree uses values from one snapshot to create the next snapshot 
in time.
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The XOR function cannot be implemented by a single-layer perceptron.
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The XOR function is easily implemented by a two-layer perceptron.
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Figure 8-1:  A neuron combines input signals from many other neurons to produce an 
output signal.
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Figure 8-2:  The output of the unit is typically 
a nonlinear combination of its inputs. 
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Figure 8-3:  Four common transfer functions are the step, linear, logistic, and hyperbolic 
tangent functions.
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SIGMOID FUNCTIONS AND RANGES FOR INPUT VALUES

The sigmoid activation functions are S-shaped curves that fall within bounds. 
For instance, the logistic function produces values between 0 and 1, and the 
hyperbolic tangent (tanh) function produces values between –1 and 1 for all 
possible outputs of the summation function. The formulas for these 
functions are:

logistic(x)  =      1
             (1 + e-x)

          tanh(x)  =  e2x – 1
e2x + 1
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Figure 8-4:  A multi-layer perceptron with a single hidden layer.
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Figure 8-5:  The real estate training example shown here provides the input into a neural 
network and illustrates that a network is filled with seemingly meaningless weights.
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Figure 8-6:  This network has more than one output and is used to estimate the probability 
that customers will make a purchase in each of three departments.

last purchase

age

gender

avg balance
...

and so on

propensity to purchase
women’s apparel

propensity to purchase
furniture

propensity to purchase
entertainment

c08.indd 293c08.indd   293 3/16/2011 2:02:55 PM3/16/2011   2:02:55 PM

141



Figure 8-7:  There are many variations on the basic neural network architecture.
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Table 8-1: Common Features Describing a House

FEATURE DESCRIPTION RANGE OF VALUES

Num_Apartments Number of dwelling units Integer: 1–3

Year_Built Year built Integer: 1850–1986

Plumbing_Fixtures Number of plumbing fi xtures Integer: 5–17

Heating_Type Heating system type Coded as A or B

Basement_Garage Basement garage (number 
of cars)

Integer: 0–2

Attached_Garage Attached frame garage area 
(in square feet)

Integer: 0–228
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Living_Area

DESCRIPTION

Total living area (square feet)

RANGE OF VALUES

Integer: 714–4185

Deck_Area Deck / open porch area 
(square feet)

Integer: 0–738

Porch_Area Enclosed porch area 
(square feet)

Integer: 0–452

Recroom_Area Recreation room area 
(square feet)

Integer: 0–672

Basement_Area Finished basement area 
(square feet)

Integer: 0–810
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Table 8-2: Sample Record from Training Set with Values Scaled to Range –1 to 1

FEATURE RANGE OF 
VALUES

ORIGINAL 
VALUE

SCALED 
VALUE

Months_Ago 0–23 4 –0.6522

Num_Apartments 1-3 1 –1.0000

Year_Built 1850–1986 1923 +0.0730

Plumbing_Fixtures 5–17 9 –0.3077

Heating_Type Coded as A or B B +1.0000

Basement_Garage 0–2 0 –1.0000

Attached_Garage 0–228 120 +0.0524

Living_Area 714–4185 1,614 –0.4813

Deck_Area 0–738 0 –1.0000

Porch_Area 0–452 210 –0.0706

Recroom_Area 0–672 0 –1.0000

Basement_Area 0–810 175 –0.5672
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Figure 8-8:  After twenty training iterations, error on the training data is nearly zero, 
but error on the validation data reached its lowest value after just seven iterations.
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Figure 8-9:  Two Gaussian surfaces are added to produce the output surface.
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Figure 8-10:  Radial basis functions can be placed in a grid to provide even coverage 
of the input space.
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Figure 8-11:  Several bell-shaped curves are added to produce a sinusoidal output curve.
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Figure 8-12:  Varying the weights in an MLP with two hidden layer nodes leads to a 
variety of output curves.
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0 ã 0 0 0 0 = 0/16 = 0.0000

1 ã 1 0 0 0 = 8/16 = 0.5000

2 ã 1 1 0 0 = 12/16 = 0.7500

3 ã 1 1 1 0 = 14/16 = 0.8750

When codes have an inherent order, they can be mapped onto the unit interval.
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Figure 8-13:  Running a neural network on examples from the validation set can help 
determine how to interpret results.
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Table 8-3: Time Series

DATA ELEMENT DAY-OF-WEEK CLOSING PRICE

1 1 $40.25

2 2 $41.00

3 3 $39.25

4 4 $39.75

5 5 $40.50

6 1 $40.50

7 2 $40.75

8 3 $41.25

9 4 $42.00

10 5 $41.50
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Table 8-4: Time Series with Time Lag

DATA 
ELEMENT

DAY-OF-WEEK CLOSING 
PRICE

PREVIOUS 
CLOSING 

PRICE

PREVIOUS-1 CLOSING 
PRICE

1 1 $40.25

2 2 $41.00 $40.25

3 3 $39.25 $41.00 $40.25

4 4 $39.75 $39.25 $41.00

5 5 $40.50 $39.75 $39.25

6 1 $40.50 $40.50 $39.75

7 2 $40.75 $40.50 $40.50

8 3 $41.25 $40.75 $40.50

9 4 $42.00 $41.25 $40.75

10 5 $41.50 $42.00 $41.25
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Figure 9-1:  Based on 2000 census population and home value, the town of Tuxedo in 
Orange County has Shelter Island and North Salem as its two nearest neighbors.
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Table 9-1: The Neighbors

TOWN POP.

RENTING
HOUSE-
HOLDS

MEDIAN 
RENT

RENT 
<$500

RENT 
$750

RENT 
$1000

RENT 
$1,500

RENT 
>$1,500

NON-
CASH

Shelter 
Island

2,228 160   $804  3.1% 34.6% 31.4% 10.7%    3.1% 17.0%

North 
Salem

5,173 244 $1,150 3.0% 10.2% 21.6% 30.9% 24.2% 10.2%

Tuxedo 3,334 349 $907 4.6% 27.2% 29.6% 23.8%   3.8% 14.8%
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Figure 9-2:  Perhaps the cleanest training set for MBR is one that 
divides neatly into two disjoint sets.
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Figure 9-3:  This smaller set of points returns the same results as in 
Figure 9-2 using MBR.
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Figure 9-4:  The basic idea for automated diagnosis of mammogram abnormalities using 
MBR finds similar normal and abnormal cases in the knowledge base, and then decides 
which to present to the physician. (Courtesy of Dr. Tourassi)
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Figure 9-5:  Similarity matches for a mammogram suggest whether or not the mammogram 
is normal or abnormal — and provide nearby examples for further investigation.
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Figure 9-6:  B’s nearest neighbor is A, but A has many neighbors 
closer than B.
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Table 9-2: Five Customers in a Marketing Database

RECNUM GENDER AGE SALARY

1 Female 27  $ 19,000

2 Male 51  $ 64,000

3 Male 52 $105,000

4 Female 33  $ 55,000

5 Male 45  $ 45,000
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Age

Figure 9-7:  This scatter plot shows the five records from Table 9-2 
in three dimensions — age, salary, and gender — and suggests that 
standard distance is a good metric for nearest neighbors.
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Table 9-3: Distance Matrix Based on Ages of Customers 

27 51 52 33 45

27 0.00 0.96 1.00 0.24 0.72

51 0.96 0.00 0.04 0.72 0.24

52 1.00 0.04 0.00 0.76 0.28

33 0.24 0.72 0.76 0.00 0.48

45 0.72 0.24 0.28 0.48 0.00
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Table 9-4: Set of Nearest Neighbors for Three Distance Functions, Ordered Nearest to 
Farthest

DSUM DNORM DEUCLID

1 1,4,5,2,3 1,4,5,2,3 1,4,5,2,3

2 2,5,3,4,1 2,5,3,4,1 2,5,3,4,1

3 3,2,5,4,1 3,2,5,4,1 3,2,5,4,1

4 4,1,5,2,3 4,1,5,2,3 4,1,5,2,3

5 5,2,3,4,1 5,2,3,4,1 5,2,3,4,1
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Table 9-5: New Customer

RECNUM GENDER AGE SALARY

New Female 45 $100,000
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Table 9-6: Set of Nearest Neighbors for New Customer

1 2 3 4 5 NEIGHBORS

dsum 1.662 1.659 1.338 1.003 1.640 4,3,5,2,1

dEuclid 0.781 1.052 1.251 0.494 1.000 4,1,5,2,3
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Table 9-7: Customers with Attrition History

RECNUM GENDER AGE SALARY INACTIVE

1 Female 27   $19,000 no

2 Male 51   $64,000 yes

3 Male 52 $105,000 yes

4 Female 33   $55,000 yes

5 Male 45   $45,000 no

New Female 45 $100,000 ?
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Table 9-8: Using MBR to Determine Whether the New Customer Will Become Inactive

NEIGHBORS
NEIGHBOR 
ATTRITION K = 1 K = 2 K = 3 K = 4 K = 5

dsum 4,3,5,2,1 Y,Y,N,Y,N yes yes yes yes yes

dEuclid 4,1,5,2,3 Y,N,N,Y,Y yes ? no ? yes
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Table 9-9: Attrition Prediction with Confi dence

K = 1 K = 2 K = 3 K = 4 K = 5

dsum yes, 100% yes, 100% yes, 67% yes, 75% yes, 60%

dEuclid yes, 100% yes, 50% no, 67% yes, 50% yes, 60%
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Table 9-10: Attrition Prediction with Weighted Voting

K = 1 K = 2 K = 3 K = 4 K = 5

d
sum

0.749 to 
0

1.441 to 
0

1.441 to 
0.647

2.085 to 
0.647

2.085 to 
1.290

d
Euclid

0.669 to 
0

0.669
to 0.562

0.669 
to 1.062

1.157 to 
1062

1.601 to 
1.062
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Table 9-11: Confi dence with Weighted Voting

1 2 3 4 5

d
sum

yes, 100% yes, 100% yes, 69% yes, 76% yes, 62%

d
Euclid

yes, 100% yes, 54% no, 61% yes, 52% yes, 60%
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Figure 9-8:  A spectrogram is a picture of a song in the frequency domain, with frequencies 
sampled every half second.
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Figure 9-9:  A constellation is a picture of the peaks of frequen-
cies for a song in the frequency domain.
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Figure 9-10:  An anchor point is defined only by the set of peaks within a particular 
range of frequencies and times after the point in question.
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Figure 9-11:  Anchor points that match are plotted in the absolute timeframe of both the 
song and the snippet. The vertical line starting at 41 seconds indicates that the snippet is 
matching that portion of the song.
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(½ (–1) + ¼ (– 4))/(½ + ¼) = –1.5/0.75 = –2.
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Figure 9-12:  The predicted rating for Planet of the Apes is –2.66.
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Figure 10-1: Survival curves show that high-end customers stay around longer.
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Figure 10-2: The median customer lifetime is where the retention curve crosses the 50 
percent point.
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Figure 10-3: Circumscribing each point with a rectangle makes it clear how to approximate 
the area under the survival curve.
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Figure 10-4: Average customer lifetime for different groups of customers can be compared 
using the areas under the survival curve.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 12 24 36 48 60 72 84 96 108 120

Pe
rc

en
t S

ur
vi

ve
d

Tenure (Months After Start)

High End
Regular

avg 10-year tenure regular customers
44 months (3.7 years)

avg 10-year tenure high end customers
73 months (6.1 years)

c10.indd 363c10.indd   363 3/8/2011 3:13:32 PM3/8/2011   3:13:32 PM

181



Fitting parametric curves to a survival curve is easy.

y = − 0.0709x + 0.9962
R2 = 0.9215

y = 0.0102x2 − 0.1628x + 1.1493
R2 = 0.998

y = 1.0404e−0.102x

R2 = 0.9633
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The parametric curves that fit a retention curve do not fit well beyond the range where 
they are defined.

c10.indd 367c10.indd   367 3/8/2011 3:13:32 PM3/8/2011   3:13:32 PM

Parametric Curve

183



0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ha
za

rd

Age (Years)

Figure 10-5:  The shape of a bathtub-shaped hazard function starts high, plummets, and 
then gradually increases again.
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Figure 10-6:  A subscription business has customer hazard probabilities that look like this.
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Table 10-1: Tenure Data for Several Customers

CUSTOMER CENSORED TENURE

1 Y 12

2 N 6

3 N 6

4 N 3

5 Y 3

6 N 5

7 N 6

8 Y 9
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Customer 2
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Tenure

Figure 10-7:  The top chart shows a group of customers who all start at different times; 
some customers are censored because they are still active. The bottom chart shows the 
same customers on the tenure time scale.
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Table 10-2: Tracking Customers over Several Time Periods (A=Active; S=Stopped; 
blank=Censored)

TENURE PERIOD

CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 11 12

1 A A A A A A A A A A A A A

2 A A A A A A S

3 A A A A A A S

4 A A A S

5 A A A A

6 A A A A A S

7 A A A A A A S

8 A A A A A A A A A A
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Table 10-3: From Times to Hazards

TENURE PERIOD

0 1 2 3 4 5 6 7 8 9 10 11 12

ACTIVE 8 8 8 7 6 5 2 2 2 2 1 1 1

STOPPED 0 0 0 1 0 1 3 0 0 0 0 0 0

CENSORED 0 0 0 0 2 2 3 6 6 6 7 7 7

HAZARD 0.0% 0.0% 0.0% 12.5% 0.0% 16.7% 60.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Figure 10-8:  A retention curve might be quite jagged, especially in comparison to the 
survival curve for the same data.
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Figure 10-9:  These two hazard functions suggest that the risk of attrition is about one 
and a half times as great for customers acquired through telemarketing versus direct mail, 
although the ratio does differ somewhat by tenure.
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The likelihood of exactly Customer 5 stopping at time 3 is:
(1 - p8(3)) * (1 - p7(3)) * (1 - p6(3)) * p5(3) * ...

Tenure

Figure 10-10:  Cox’s insightful observation that led to proportional hazards modeling is to 
look at all customers at a given tenure and ask, “What is the likelihood that exactly one set 
of customers stops when the rest remain active?”
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Figure 10-11:  Using competing risks, creating a chart that shows the proportion of 
customers that succumb to each risk at any given tenure is possible.
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Figure 10-12:  This chart shows 1-Survival, the cumulative number of reactivations as well 
as the “hazard probability” of reactivation.
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Figure 10-13:  The conditional survival is the survival, assuming that a customer has 
survived to a particular tenure. It is calculated by dividing the survival value by the value at 
that tenure.
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Figure 10-14:  You can also use survival analysis for forecasting customer stops.
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Figure 10-15:  A time-window technique allows you to see changes in survival over time.
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Wait — that’s not quite fair. The Ant World landscape is continuous and has 
infi nitely many points; an ant could never be sure it has found the highest one. 
As a kindness, the ants have been engineered to be happier the higher they are. 
The continuous landscape can be divided into squares. Ants only have to visit the 
center of each square, and are satisfi ed when they think they have found the 
square with the highest center. As the creator of Ant World, you can make the 
squares as large or as small as you want. After ants have located the highest 
square, you can subdivide it into many smaller squares and have the ants 
restart their quests.

By altering the design of the genetically engineered ants, they can be used 
to explain both swarm intelligence and genetic algorithms. The fi rst idea 
shared by these two techniques is that many small agents, working 
independently or cooperatively, can solve complex problems.

E Pluribus Unum
Figure 11-1 is a map of the hilly landscape of an optimization problem in two 
dimensions. The problem is to fi nd the highest point. It happens to be 
located near the upper-right corner, at the position labeled (4, 4), but several 
other points are nearly as high.

0.8

Figure 11-1:  The optimization challenge is to find the highest hill.
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Several generations of the Game of Life from two starting patterns.

Generation 0 Generation 1 Generation 2 Generation 3 Generation 4
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Figure 11-2:  Finding the maximum of this simple function helps illustrate genetic algorithms.
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Table 11-1: Ten Randomly Generated Genomes

COUNT 16 8 4 2 1 P FITNESS

1 0 1 1 1 0 14 238

1 0 1 0 0 0   8 184

1 1 0 1 1 1 23 184

1 0 1 0 1 0 10 210

1 1 1 0 0 0 24 168

1 1 1 1 1 0 30   30

1 0 0 1 0 0   4 108

1 0 1 1 0 1 13 234

1 1 1 0 0 1 25 150

1 0 0 0 1 1   3   84
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Figure 11-3:  The basic operators in genetic algorithms are selection, crossover, and mutation.

generation n

this genome
dies off this genome

multiplies

this genome
survives Selection keeps the size of the population constant but

increases the fitness of the next generation. Genomes
with a higher fitness (darker shading) proliferate and
genomes with lighter shading die off.

Crossover is a way of
combining two genomes.
A crossover position
determines where the
genomes “break” and
are recombined.

Crossover
position

Mutation makes an occasional
random change to a random position
in a genome. This allows features to
appear that may not have been in the
original population.

generation n + 1

mutation
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Nucleotides in DNA code for amino acids that make up proteins.
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Table 11-2: The Population After Selection

COUNT 16 8 4 2 1 P FITNESS

1 1 0 0 0 0 16 240

1 0 1 0 0 0   8 184

1 1 0 1 1 1 23 184

2 0 1 0 1 0 10 210

1 1 1 0 0 0 24 168

1 0 0 1 0 0   4 108

2 0 1 1 0 1 13 234

1 1 1 0 0 1 25 150
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Figure 11-4:  A cube is a useful representation of schemata on three bits. The corners 
represent the genomes, the edges represent the schemata of order 2, the faces, the 
schemata of order 1, and the entire cube, the schema of order 0.
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Figure 11-5:  The comment signature describes the text in the comment.
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Figure 11-6:  The genome has a weight for each field in the comment signature, plus an 
additional weight called a bias.
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One handset on 
the account

Family Basic 
pricing plan

Popularity of 
handset

Figure 12-1:  This decision tree reveals an interesting pattern, unrelated to the target variable, 
that is not obvious without knowledge of the business.
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Three different types of credit card customers differ in their payment and usage patterns.
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Transactor (Limit $2,000) Convenience User (Limit $2,000) Revolver (Limit $2,000)

Charge
% Of 
Limit Measure Charge

% Of 
Limit Measure Charge

% Of 
Limit Measure

Jan $1,250.44 62.5% 1.00   $1,172.51 58.6% 1.00    $0.00 0.0% 0.00

Feb $1,546.52 77.3% 1.00        $0.00   0.0% 0.00 $135.95 6.8% 0.27

Mar $1,661.93 83.1% 1.00        $0.00   0.0% 0.00   $90.28 4.5% 0.18

Apr    $522.87 26.1% 1.00       $47.28   2.4% 0.09    $0.00 0.0% 0.00

May $1,937.79 96.9% 1.00        $0.00   0.0% 0.00   $25.86 1.3% 0.05

Jun    $863.30 43.2% 1.00    $738.99 36.9% 1.00    $0.00 0.0% 0.00

Jul    $841.93 42.1% 1.00        $0.00   0.0% 0.00 $113.94 5.7% 0.23

Aug $1,237.68 61.9% 1.00      $53.56   2.7% 0.11    $0.00 0.0% 0.00

Sep   $1,741.01 87.1% 1.00      $60.57   3.0% 0.12    $0.00 0.0% 0.00

Oct    $959.30 48.0% 1.00 $1,086.34 54.3% 1.00  $151.61 7.6% 0.30

Nov $1,954.05 97.7% 1.00        $0.00   0.0% 0.00 $88.15 4.4% 0.18

Dec $1,051.92 52.6% 1.00       $0.00   0.0% 0.00   $0.00 0.0% 0.00

Overall 1.00 0.28 0.10
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Transactor (Limit $2,000) Convenience User (Limit $2,000) Revolver (Limit $2,000)

Balance Payment Measure Charge Payment Measure Charge Payment Measure

Jan $1,250.44 $1,250.44 1.00 $1,172.51      $0.00 0.00 $1,500.00 $30.00 0.02

Feb $1,546.52 $1,546.52 1.00  $1,172.51 $300.00 0.26 $1,620.95 $29.70 0.02

Mar $1,661.93 $1,661.93 1.00    $872.51 $300.00 0.34 $1,696.37 $32.12 0.02

Apr    $522.87    $522.87 1.00     $619.79 $300.00 0.48 $1,680.31 $33.61 0.02

May $1,937.79 $1,937.79 1.00     $319.79 $300.00 0.94 $1,689.37 $33.27 0.02

Jun    $863.30 $863.30 1.00     $758.77    $19.79 0.03 $1,672.73 $33.45 0.02

Jul   $841.93    $841.93 1.00     $738.99 $300.00 0.41 $1,769.95 $33.12 0.02

Aug $1,237.68 $1,237.68 1.00     $492.55 $300.00 0.61 $1,753.39 $35.07 0.02

Sep  $1,741.01  $1,741.01 1.00     $253.12   $192.55 0.76 $1,735.85 $34.72 0.02

Oct    $959.30    $959.30 1.00   $1,146.91    $60.57 0.05 $1,870.10 $34.37 0.02

Nov $1,954.05 $1,954.05 1.00 $1,086.34 $300.00 0.28 $1,941.07 $37.06 0.02

Dec $1,051.92 $1,051.92 1.00    $786.34 $300.00 0.38 $1,922.54 $38.45 0.02

Overall 1.00 0.38 0.02
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Cost Per Month $500,000

Number of Months 6

Cost Per New Customer $250.00

Expected Discount Rate 1.0%

Revenue Per Customer Month

Attrition Rate Per Month

$30

5.0%

1 2 3 4 5 6 7 8 9 10 11 12
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cost $500,000 $500,000 $500,000 $500,000 $500,000 $500,000 $0 $0 $0 $0 $0 $0

Starts 2,000 2,000 2,000 2,000 2,000 2,000 0 0 0 0 0 0

Attrition Rate 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

New Customers 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 0.0 0.0 0.0 0.0 0.0 0.0
Contribution to Base Customers 0.0 1,900.0 3,705.0 5,419.8 7,048.8 8,596.3 10,066.5 9,563.2 9,085.0 8,630.8 8,199.2 7,789.3

Revenue/Customer $30 $30 $30 $30 $30 $30 $30 $30 $30 $30 $30 $30

Revenue $30,000 $87,000 $141,150 $192,593 $241,463 $287,890 $301,995 $286,895 $272,551 $258,923 $245,977 $233,678

Cumulative Cost $500,000 $1,000,000 $1,500,000 $2,000,000 $2,500,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000

Cumulative Revenue $30,000 $117,000 $258,150 $450,743 $692,205 $980,095 $1,282,090 $1,568,986 $1,841,537 $2,100,460 $2,346,437 $2,580,115

Monthly Discount Rate 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%
Net Discount Rate 1.0% 2.0% 3.0% 3.9% 4.9% 5.9% 6.8% 7.7% 8.6% 9.6% 10.5% 11.4%

Discounted Revenue $29,700 $85,269 $136,958 $185,004 $229,629 $271,042 $281,479 $264,731 $248,980 $234,165 $220,233 $207,129

Cum Discounted Revenue $29,700 $114,969 $251,926 $436,930 $666,559 $937,601 $1,219,081 $1,483,812 $1,732,792 $1,966,957 $2,187,190 $2,394,319

Cum Costs $500,000 $1,000,000 $1,500,000 $2,000,000 $2,500,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000 $3,000,000

Net Revenue −$470,300 −$885,031 −$1,248,074 −$1,563,070 −$1,833,441 −$2,062,399 −$1,780,919 −$1,516,188 − $1,267,208 −$1,033,043 −$812,810 −$605,681

Figure 12-2:  This financial spreadsheet model calculates the impact of a marketing campaign 
for acquiring new customers.
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Cost Per Month 500000
Number of Months 6
Cost Per New Customer 250
Expected Discount Rate 0.01
Revenue Per Customer Month 30

0.05

1 2

Jan Feb

Cost =IF(B$8<=$B$2, $B$1, 0) = F(C$8<=$B$2, $B$1, 0)

Starts =B10/$B$3 =C10/$B$3
Attrition Rate =$B$6 =$B$6
New Customers =B11/2 =C11/2
Contribution to Base Customers =IF(ISNUMBER(A14), (A14+A11)*(1−B12), 0) =IF(ISNUMBER(B14), (B14+B11)*(1−C12), 0)

Revenue/Customer =$B$5 =$B$5
Revenue =B15*(B14+B13) =C15*(C14+C13)

Cumulative Cost =B10+IF(ISNUMBER(A17), A17, 0) =C10+IF(ISNUMBER(B17), B17, 0)

Cumulative Revenue =B16+IF(ISNUMBER(A18), A18, 0) =C16+IF(ISNUMBER(B18), B18, 0)

Monthly Discount Rate =$B$4 =$B$4
Net Discount Rate =1−IF(ISNUMBER(A20), 1−A20, 1)*(1−B19) =1−IF(ISNUMBER(B20), 1−B20, 1)*(1−C19)

Discounted Revenue =B16*(1−B20) =C16*(1−C20)

Cum Discounted Revenue =IF(ISNUMBER(A22), A22, 0)+B21 =IF(ISNUMBER(B22), B22, 0)+C21

Cum Costs =IF(ISNUMBER(A23), A23, 0)+B10 =IF(ISNUMBER(B23), B23, 0)+C10

Net Revenue =B22−B23 =C22−C23

Attrition Rate Per Month

Figure 12-3: The spreadsheet performs the calculations needed for a financial spreadsheet 
model.
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Table 12-1: Various Financial Measures for the Campaign

YEAR COST REVENUE
NET 

REVENUE
NUMBER OF 
CUSTOMERS

1 $3,000,000 $2,394,319 –$605,681 7,789.3

2 $3,000,000 $4,100,195 $1,100,195 4,209.0

3 $3,000,000 $4,917,253 $1,917,253  2,274.4

4 $3,000,000 $5,308,597 $2,308,597 1,229.0

5 $3,000,000 $5,496,038 $2,496,038    664.1
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Figure 12-4:  This spreadsheet introduces “uncertainty” into the financial model by having 
the inputs come from various distributions.
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Figure 12-5: This chart shows the distribution of net revenue after two years, along with 
lines showing the 5 percent and 95 percent confidence range.
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Figure 12-6: Assuming that 100 customers start on the first day of the forecast and 50 
more start half a year later, survival curves determine how many customers are expected 
to still be around on any day in the future.
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Figure 12-7: For customers who are active today, the survival curve can be retrofitted to 
the past and then extended into the future.
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This chart shows a time series with its trend line.

y = –704.97x + 31965 
R2 = 0.901
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The difference between the data and the trend line is called the residuals.
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lag

This chart shows a correlogram, which is the correlation coefficient of a time series 
using different lags.
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t �
            r

(1�r2)/(N�2)

yt = a0 � a1yt�1 � a2yt�12.

yt = �169.56 � 1.02 yt�1 � 0.09yt�12
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ARIMA forecasts often do well for the period of the forecast, but do less well when 
extrapolating into the future.
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29 American Dreams

16 Bohemian Mix

07 Money & Brains

31 Urban Achievers

04 Young Digerati

29 American Dreams

16 Bohemian Mix

07 Money & Brains

26 The Cosmopolitans

04 Young Digerati
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Figure 13-1:  Three data points have been chosen as cluster seeds.
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Figure 13-2:  The initial clusters are formed by assigning each data point to the closest seed.

226



Figure 13-3:  In the update step, the cluster centroid is calculated as the average 
value of the cluster members.
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Figure 13-4:  The k-means algorithm terminates when no records are reassigned 
following the latest relocation of the centroids.
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The points in this diagram could represent stations on two metro lines that cross near 
the center of the map.
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Cluster Boundary

C D

BSeed 1

Seed 2

Figure 13-5:  With K=2, choosing A and C as the cluster seeds leads to one cluster 
containing A and B and another containing C and D, which is clearly not the best pair 
of clusters.
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Figure 13-6:  These examples of clusters of size 2 and 4 in a deck 
of playing cards illustrate that there is no one correct clustering.
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Figure 13-7:  This parallel coordinates chart shows five clusters with the percentage of 
shoppers who have made a purchase in each department.
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Figure 13-8:  This chart compares the distribution of purchasers and non-purchasers in 
two clusters with the distribution in the overall population.
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Figure 13-9:  The directed clusters found by decision trees have boundaries that are 
parallel to the axes.
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Figure 13-10:  The distances used to illustrate the silhouette measure are based on the (x,y) 
coordinates shown here.

0
0

5

5

10

8,3
12,4

15,5
20,7

40,8

45,12

42,17

48,21

42,24

33,14

15,21

10,25

20,21

18,25
22,26

17,27

16,30
11,32

10,8

5,12

10

15

15

20

20

25

25

30

30

35

35

40 45 50

c13.indd 481c13.indd   481 3/8/2011 3:15:55 PM3/8/2011   3:15:55 PM

235



Figure 13-11: The dissimilarity score for a point depends on its distance from members 
of its own cluster and its distance from members of its neighboring cluster.
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Average dissimilarity: 7.45
Silhouette: 0.64

Average dissimilarity: 8.09
Silhouette: 0.60

Average dissimilarity: 10.43
Silhouette: 0.61
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Figure 13-12:  The silhouette scores of the cluster members are averaged to obtain the 
cluster silhouette.
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Figure 13-13:  Should the new record really be 
assigned to Cluster A?
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Cluster 1AB

Figure 13-14:  A cluster tree divides towns served by the Boston Globe into four distinct 
groups.
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Table 13-1: Towns in the City and West 1 Editorial Zones

TOWN EDITORIAL ZONE CLUSTER ASSIGNMENT

Boston City 1B

Brookline City 2

Cambridge City 1B

Somerville City 1B

Needham West 1 2

Newton West 1 2

Waltham West 1 1B

Watertown West 1 1B

Wellesley West 1 2

Weston West 1 2
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Figure 13-15:  The map shows how the demographic clusters are distributed on a 
map of the Globe’s coverage area.
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The total distance to the points 2 and 4 is minimized at different points for different 
values of d using �A � B�d as the distance function. 
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DISTANCE (continued)

The fi gure graphs the total distance to the points 2 and 4 for a range of 
values using three different distance functions of the form �A � B�d with d 
taking on the values 2, 1, and 0.5.

The relationship between the value of d in the d-norm family of distance 
functions and three important statistical measures — the mean (which is called 
average in the rest of the book), median, and mode — sheds light on the 
relationship between the various clustering methods discussed in this section.
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Distance 2Distance 3
A B

1membershipA =
)p +(3

3 )p(3
2

1membershipB =
)p +(2

3 )p(2
2

Figure 13-1 6:  The data point shown here is to be assigned fuzzy membership in clusters 
A and B, which are represented by their centroids.
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Table 13-2: Fuzzy Membership in A and B for Different Values of P

P MEMBERSHIP IN A MEMBERSHIP IN B

0 0.50 0.50

1 0.40 0.60

2 0.31 0.69

3 0.23 0.77
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Figure 14-1:  The line looks like a pretty good fit, but the R2 value does not seem to agree. 
Sometimes measures of goodness do not do such a good job.
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Figure 14-2:  How many clusters can you see? There is no right answer.
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Figure 14-3:  Is this really the best way to split the data into two clusters?
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Figure 14-4:  Much more intuitive clusters are generated after 
applying a simple linear transformation.

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

c14.indd 503c14.indd   503 3/8/2011 3:16:40 PM3/8/2011   3:16:40 PM

249



−5

−4

−3

−2

−1

0

1

2

3

4

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

Figure 14-5:  Back on the original data points, the clusters are characterized by ellipses 
rather than circles, and the ellipses are much more intuitive.
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Figure 14-6:  The normal distribution can be generalized to two or more dimensions.
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Figure 14-7:  The cross-section for the normalized 
distribution in two dimensions is an ellipse.
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Figure 14-8:  Four k-means clusters identify one of the clusters (on the lower left), but do 
not do a good job on the rest of the data.
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Figure 14-9:  Four GMM clusters do a pretty good job of finding the obvious clusters in 
the data.
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Table 14-1: A Contingency Table for the Chi-Square Calculation for Divisive Clustering on 
Categorical Variables

VARIABLE A LEFT CHILD RIGHT CHILD

Val 1    <count>     <count>

Val 2    <count>     <count>

…

Val n    <count>     <count>
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Table 14-2: First Level of Hierarchical Clustering, Combining Ages that are One Year Apart

 AGE DISTANCE 1

         1  [1]

         3  [3]

         5 [5]

         8 [8-9]

         9 [8-9]

       11 [11-13]

       12 [11-13]

       13    [11-13]

       37 [37]

      43 [43]

      45 [45]

      49 [49]

       51    [51]

       65 [65]
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Table 14-3: Clustering of 15 Ages into 3 Clusters

AGE DISTANCE 1 DISTANCE 2 DISTANCE 3 DISTANCE 4 DISTANCE 7

   1 [1] [1-5] [1-13] [1-13] [1-13]

  3 [3] [1-5] [1-13] [1-13] [1-13]

  5 [5] [1-5] [1-13] [1-13] [1-13]

  8 [8-9] [8-13] [1-13] [1-13] [1-13]

  9 [8-9] [8-13] [1-13] [1-13] [1-13]

 11 [11-13] [8-13] [1-13] [1-13] [1-13]

12 [11-13] [8-13] [1-13] [1-13] [1-13]

13 [11-13] [8-13] [1-13] [1-13] [1-13]

37 [37] [37] [37] [37] [37-51]

43 [43] [43-45] [43-45] [43-51] [37-51]

45 [45] [43-45] [43-45] [43-51] [37-51]

49 [49] [49-51] [49-51] [43-51] [37-51]

 51 [51] [49-51] [49-51] [43-51] [37-51]

65 [65] [65] [65] [65] [65]
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Figure 14-10:  This visualization, called a dendogram, shows 
the clusters created by hierarchical clustering of ages.
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Figure 14-11:  Single linkage, complete linkage, and 
centroid distance are three ways of combining clusters 
when they contain more than one data record.
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Table 14-4: Distance Matrix for Ages

AGES 1 3 5 8 9 11 12 13 37 43 45 49 51 65

1  2 4 7 8 10 11 12 36 42 44 48 50 64

  3 2 2 5 6 8 9 10 34 40 42 46 48 62

  5 4 2 3 4 6 7 8 32 38 40 44 46 60

  8 7 5 3 1 3 4 5 29 35 37 41 43 57

  9 8 6 4 1 2 3 4 28 34 36 40 42 56

 11 10 8 6 3 2 1 2 26 32 34 38 40 54

12 11 9 7 4 3 1  1 25 31 33 37 39 53

13 12 10 8 5 4 2 1  24 30 32 36 38 52

37 36 34 32 29 28 26 25 24  6 8 12 14 28

43 42 40 38 35 34 32 31 30 6  2 6 8 22

45 44 42 40 37 36 34 33 32 8 2  4 6 20

49 48 46 44 41 40 38 37 36 12 6 4  2 16

 51 50 48 46 43 42 40 39 38 14 8 6 2 14

65 64 62 60 57 56 54 53 52 28 22 20 16 14
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Table 14-5: The Distance Matrix for the Ages After Combining 8- and 9-Year-Olds

AGES 1 3 5 8&9 11 12 13 37 43 45 49 51 65

     1 2 4 7 10 11 12 36 42 44 9 50 64

    3 2 2 5 8 9 10 34 40 42 46 48 62

    5 4 2 3 6 7 8 32 38 40 44 46 60

8&9 7 5 3 1 2 3 4 28 34 36 40 42

    11 10 8 6 2 1 2 26 32 34 38 40 54

   12 11 9 7 3 1 1 25 31 33 37 39 53

   13 12 10 8 4 2 1 24 30 32 36 38 52

  37 36 34 32 28 26 25 24 6 8 12 14 28

  43 42 40 38 34 32 31 30 6 2 6 8 22

   45 44 42 40 36 34 33 32 8 2 4 6 20

  49 48 46 44 40 38 37 36 12 6 4 2 16

   51 50 48 46 42 40 39 38 14 8 6 2 14

  65 64 62 60 56 54 53 52 28 22 20 16 14
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The output units compete with each other
for the output of the network.

The output layer is laid out like a grid.
Each unit is connected to all the input
units, but not to each other.

The input layer is connected to the inputs.

Figure 14-12:  The self-organizing map is a special kind of neural network that can be 
used to detect clusters.
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The winning output
unit and its path
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Figure 14-13:  An SOM finds the output unit that does the 
best job of recognizing a particular input.
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Figure 15-1:  A logical data model for transaction-level market basket data has tables for 
the important entities related to market basket data.

LINE ITEM

  LINE_ITEM_ID

  ORDER_ID

  PRODUCT_ID

  QUANTITY

  UNIT_PRICE

  UNIT_COST

  TAX

  ...

CUSTOMER

  CUSTOMER_ID

  NAME

  ADDRESS

  ...

STORE

  STORE_ID

  STORE_TYPE

  SIZE

  FRONTAGE

  ADDRESS

  ...

PRODUCT

  PRODUCT_ID

  CATEGORY

  SUBCATEGORY

  DESCRIPTION

  ...

ORDER

  ORDER_ID

  STORE_ID

  CUSTOMER_ID

  ORDER_DATE

  PAYMENT_TYPE

  TOTAL_REVENUE

  ...
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Figure 15-2:  This bubble plot shows the breadth of customer relationships by the depth 
of the relationship.
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Figure 15-3:  This chart shows the average amount spent by credit card type based on the 
number of items in the order for one particular retailer.
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Figure 15-4:  Showing marketing interventions and product sales on the same chart makes 
seeing effects of marketing efforts possible.
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Figure 15-5: The proportion of Hispanics by county in Texas is quite high near the 
Mexican border, and then declines throughout the rest of the state.
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Figure 15-6: This chart shows that one product is both popular (because the cube is big) 
and has a high preference in Hispanic stores.

product_code

dollars_hisp_score

21.5803

GMI_hisp_score

−8.38781
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Table 15-1: Grocery Point-of-Sale Transactions

CUSTOMER ITEMS

1 Orange juice, soda

2 Milk, orange juice, window cleaner

3 Orange juice, detergent

4 Orange juice, detergent, soda

5 Window cleaner, soda
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Table 15-2: Co-Occurrence of Products

OJ WINDOW CLEANER MILK SODA DETERGENT

OJ 4 1 1 2 1

Window Cleaner 1 2 1 1 0

Milk 1 1 1 0 0

Soda 2 1 0 3 1

Detergent 1 0 0 1 2
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LHS
(Left-Hand Side)

RHS
(Right-Hand Side)

Absent Present

Absent No LHS,
No RHS

No LHS,
RHS

Present LHS,
No RHS

LHS and
RHS

Number of transactions
that contain the items on
the right-hand side, but
not the items on the left-
hand side

IF <LHS> THEN <RHS>

Figure 15-7: An association rule has a corresponding contingency table, where the two 
dimensions are based on the two sides of the rule. The cells in the table contain counts 
of the number of transactions that appear or do not appear on either side.
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First determine the right
set of items. For instance,
is pizza an item or are the
toppings items?

Next, calculate the probabilities and
joint probabilities of items and
combinations of interest, perhaps
limiting the search using thresholds
on support or value.

If mushroom, then pepperoni.Finally, analyze the probabilities to
determine the right rules.

Topping Probability

1

2

3

Figure 15-8: Finding association rules has these basic steps.
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Table 15-3: Transactions with More Summarized Items

CUSTOMER PIZZA MILK SUGAR APPLES COFFEE

1 X

2 X X

3 X X X

4 X X

5 X X X X
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Table 15-4: Transactions with More Detailed Items

CUSTOMER
EXTRA 
CHEESE ONIONS PEPPERS MUSHROOMS OLIVES

1 X X X

2 X

3 X X X

4 X X

5 X X X X
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Figure 15-9: Product hierarchies start with the most general and move to increasing detail.
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Table 15-5: Probabilities of Three Items and Their Combinations

COMBINATION PROBABILITY

A 45.0%

B 42.5%

C 40.0%

A and B 25.0%

A and C 20.0%

B and C 15.0%

A and B and C  5.0%
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Table 15-6: Confi dence in Rules

RULE P(CONDITION)
P(CONDITION
AND RESULT) CONFIDENCE

If A and B, then C 25% 5% 20%

If A and C, then B 20% 5% 25%

If B and C, then A 15% 5% 33%
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p(condition a__________________nd result)
p(condition)

lift = __________________   =  _p(condition a_________________nd result)
p(result) p(condition) p(result)

Equation 28
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Table 15-7: Lift Measurements for Four Rules

SUPPORT CONFIDENCE P(RESULT) LIFTRULE

If A and B, then C   5% 20% 40.0% 0.50

If A and C, then B   5% 25% 42.5% 0.59

If B and C, then A   5% 33% 45.0% 0.74

If A, then B 25% 59% 42.5% 1.31
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Table 15-8: Transaction Counts for Data in Table 15-5

GROUPING COUNT PROPORTION

A only 100   5%

B only 150   8%

C only 200 10%

AB only 400 20%

AC only 300 15%

BC only 200 10%

ABC only 100   5%

None 550 28%
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Table 15-9: Chi-Square Calculation for the Rule, “If A and B, then C”

COUNTS EXPECTED VALUES CHI-SQUARE

NOT C C NOT C C NOT C C

NOT AB 800 700 900 600 11.1 16.7

AB 400 100 300 200 33.3 50.0
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Figure 15-10: This example shows how to count up the frequencies on pizza sales for 
market basket analysis.

A pizza restaurant has sold 2000 pizzas, of which:
100 are mushroom only, 150 are pepperoni, 200 are extra cheese.
400 are mushroom and pepperoni, 300 are mushroom and extra cheese, 200 are pepperoni and extra cheese.
100 are mushroom, pepperoni, and extra cheese.
550 have no extra toppings. 

We need to calculate the probabilities for all possible combinations of items.

100 + 400 + 300 + 100 = 900 pizzas or 45%

150 + 400 + 200 + 100 = 850 pizzas or 42.5%

200 + 300 + 200 + 100 = 800 pizzas or 40%

400 + 100 = 500 pizzas or 25%

300 + 100 = 400 pizzas or 20%

200 + 100 = 300 pizzas or 15%

100 pizzas or 5%

The works

Mushroom and extra cheese
Mushroom and pepperoni

Just mushroom

There are three rules with all three items:

Support = 5%
Confidence = 5% divided by 25% = 0.2
Lift = 20%(100/500) divided by 40%(800/2000) = 0.5

Support = 5%
Confidence = 5% divided by 20% = 0.25
Lift = 25%(100/400) divided by 42.5%(850/2000) = 0.588

Support = 5%
Confidence = 5% divided by 42.5% = 0.588
Lift = 55.6%(500/900) divided by 43.5%(200/850) = 1.31

The best rule has
only two items:

Support = 5%
Confidence = 5% divided by 15% = 0.333
Lift = 33.3%(100/300) divided by 45%(900/2000) = 0.74
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Clicks Imply Complaint Rules Chi-Square
Telecom + Travel ==> Loans 299.0
Telecom + Government Grants ==> Credit Report 299.0
Government Grants + Gifts ==> Credit Report 299.0
Education + College/Scholarship ==> [Uncategorized] 149.0
Debt + Telecom ==> Credit Report 149.0
Debt + Government Grants ==> Credit Report 149.0
Debt + Gifts ==> Credit Report 149.0
Credit Card + Travel ==> Loans 99.0
Credit Card + Government Grants ==> Credit Report 99.0
Entrepreneurial + Credit Report ==> Home Improvement 74.0

Figure 15-11: Some combinations of clicks on e-mail offer types are more likely to 
lead to complaints on subsequent offers.
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Decisioning Algorithm
 

Product n

Best Offer

Product 3

. . .

Product 2

Product 1

Figure 15-12: A typical cross-sell model builds propensities for each product and then 
has a decisioning algorithm to choose the best product for each customer. 
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Table 15-10: Prescription Sequences for One Calendar Year

PURCHASE PATTERN PRESCRIPTIONS PATIENTS PERCENT

LLLL 4 12,099 12.2%

LLLLLLLLLLLL 12 11,910 12.0%

L 1 11,522 11.6%

LLL 3  9,261   9.3%

LLLLLLLLLLL 11  9,042   9.1%

LL 2  8,653   8.7%

LLLLL 5  6,328   6.4%

LLLLLLLLLL 10  6,325   6.4%

LLLLLL 6  6,013   6.1%

LLLLLLLLL 9  5,316   5.4%

LLLLLLL 7  5,147   5.2%

LLLLLLLL 8  4,992   5.0%

OTHER  2,701   2.7%
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Table 15-11: Patients with 11 Zocor Prescriptions

SEQUENCE LENGTH PATIENTS PERCENT

ZZZZZZZZZZZZ 12 8674 44.8%

ZZZZZZZZZZZ 11 7699 39.8%

ZZZZZZZZZZZZZ 13 2063 10.7%

ZZZZZZZZZZZZZZ 14  390   2.0%

ZZZZZZZZZZZV 12  180   0.9%

ZZZZZZZZZZZZZZZ 15  152   0.8%

ZZZZZZZZZZZZZZZZZZ 18  112   0.6%

ZZZZZZZZZZZZZZZZ 16    32   0.2%

ZZZZZZZZZZZCZZ 14    13   0.1%

ZZZZZZZZZZZVV 13     11   0.1%

ZZZZZZZZZZZZC 13     11   0.1%

ZZZZZZZZZZZZLL 14     11   0.1%

ZZZZZZZZZZZZZZZZZZZ 19     11   0.1%

ZZZZZZZZZZZZZZZZZZZZZZ 22    10   0.1%

ZZZZZZZZZZZZZZZZZZZZZZZZZ 25    10   0.1%

ZZZZZZZZZZZZZZZZZ 17      9   0.0%

ZZZZZZZZZZZZZZZZZZZZZZZ 23      9   0.0%

ZZZZZZZZZZZZZZZZZZZZL 21      8   0.0%

ZZZZZZZZZZZZV 13      7   0.0%

ZZZZZZZZZZZZZZVVZZ 18      7   0.0%

ZZZZZZZZZZZMM 13      6   0.0%

ZZZZZZZZZZZZZZZZLZ 18      4   0.0%

ZZZZZZZZZZZZZZZZZZO 19      4   0.0%
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A fully connected graph with
four nodes and six edges.

In a fully connected graph, there
is an edge between every pair

of nodes.

A graph with five nodes
and four edges.

Figure 16-1:  The graph on the left is fully connected. The graph on the right has a 
hub and spokes.
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Intersecting edges

Three nodes cannot connect to three other
nodes without two edges crossing.

A fully connected graph with five nodes
must also have edges that intersect.

Figure 16-2:  Some graphs cannot be drawn without crossing edges.
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Figure 16-3:  This is an example of a weighted graph where the edge weights are the 
number of transactions containing the items represented by the nodes at either end.
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Figure 16-4:  The Pregel River in Königsberg has two islands connected by a total of 
seven bridges, which played an important role in the development of graph theory.
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Figure 16-5:  This graph represents the layout of Königsberg. The edges are bridges 
and the nodes are the riverbanks and islands.
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Figure 16-6:  This route map, produced by Optimap using data provided by the 
Google Maps API, shows the best route (measured by driving time) for visiting several 
cities in the San Francisco Bay Area.
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Figure 16-7:  This weighted graph shows the expected driving time in hh:mm:ss 
between selected city pairs.
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Table 16-1: Driving Times Between Addresses in Selected City Pairs

FROM/TO CAMPBELL 
(1)

SAN JOSE 
(2)

BERKELEY 
(3)

MENLO 
PARK (4)

PALO ALTO 
(5)

CAMPBELL 
(1)

           0         814
00:13:34

    4,388
01:13:08

    1,300
00:21:40

     1,630
00:27:10

SAN JOSE 
(2)

        814
00:13:34

           0     3,658
01:00:58

    1,287
00:21:27

     1,390
00:23:10

BERKELEY 
(3)

    4,388
01:13:08

     3,658
01:00:58

           0      4,194
01:09:54

     3,879
01:04:39

MENLO 
PARK (4)

     1,300
00:21:40

     1,287
00:21:27

     4,194
01:09:54

           0      1,037
00:17:17

PALO 
ALTO (5)

     1,630
00:27:10

     1,390
00:23:10

    3,879
01:04:39

     1,037
 00:17:17

           0
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Tina

Jill

Cara

Pam

Beth Sue Alice Jane

Only Alice has five friends, but because of her, five people have a friend with 
five friends.
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Table 16-2: Five Telephone Calls

ID ORIGINATING NUMBER TERMINATING NUMBER DURATION

1 353-3658 350-5166 00:00:41

2 353-3068 350-5166 00:00:23

3 353-4271 353-3068 00:00:01

4 353-3108 555-1212 00:00:42

5 353-3108 350-6595 00:01:22
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00:00:41

00:00:23

Figure 16-8:  Five calls link seven telephone numbers.
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Figure 16-9:  A call graph for 15 numbers and 19 calls.
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This is the initial call graph with short
calls removed and with nodes labeled
as “fax,” “unknown,” and “information.”

Nodes connected to the initial fax
machines are assigned the “fax” label.

Those connected to “information” are
assigned the “voice” label.

Those connected to both are “shared.”

The rest are “unknown.”

Figure 16-10:  Applying the graph-coloring algorithm to the call graph shows which 
numbers are fax numbers and which are shared.
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Figure 17-1:  A hierarchy of data and its descriptions helps users navigate around a 
data warehouse. As data gets more abstract, it generally gets less voluminous.
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Figure 17-2:  The physical and logical data models may not be similar to each other.

This logical model has four entities
for customer generated events and
one for accounts.

The logical model is intended to be
understood by business users.

Logical Data Model

Physical Data Model
In the physical model, information from three
entities is combined into a single CONTACT
table, where different types of contacts are
distinguished using the CONTACT_TYPE field. 

Information about accounts is actually split into
two tables, because one is summarized from
the CONTACT table. 

The physical model also specifies exact types,
partitioning, indexes, storage characteristics,
degrees of parallels, constraints on values, and
many other things not of interest to the
business user.

COMPLAINT

 ACCT_ID

 COMPLAINT_CODE

 REFUND_AMOUNT

 ...

COMPLIMENT

 ACCT_ID

 COMMENT_CODE

 COMMENT_TEXT

 ...

PRODUCT_CHANGE

 ACCT_ID

 OLD_PROD

 NEW_PROD

 ...

ACCOUNT

 ACCT_ID

 NAME

 START_DATE

 NUM_COMPLAINTS

 ...

This symbol means an account might
have zero or more product changes. 

This symbol means a product change
has exactly one account. 

CONTACT

 ACCT_ID

 CONTACT_CODE

 CONTACT_DATE

 AMOUNT

 NEW_PRODUCT

 COMMENT

 ...

ACCT

 ACCT_ID

 NAME

 START_DATE

 ...

ACCTSUM

 ACCT_ID

 NUM_COMPLAINTS

 NUM_COMPLIMENTS

 NUM_CHANGES

 ...
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Relational databases have four major querying operations.

FILTER (rows)
Filtering removes rows based on the values in
one or more columns. The output rows are a
subset of the rows in the input table.

SELECT (columns)
Selecting chooses the columns for the output.
Each column in the output is in the input, or a
function of some of the input columns.

AGGREGATE
Aggregating (group by) summarizes columns
based on a common key. All the rows with the
same key are summarized into a single output
row, by performing aggregation operations on
zero or more columns.

JOIN (tables)
Joining combines rows in two tables, usually
based on a join condition consisting of a
boolean expression involving rows in both
tables. Whenever a pair of rows from the two
tables match, a new row is created in the
output.
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col B col C col D col Ecol A col F

007
008
009

001
002
003
004
005
006

010
011
012

row
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An entity relationship diagram describes the layout of data for a simple credit card database. 

An ER diagram can be used to show the tables and fields in a relational database. Each box shows a
single table and its columns. The lines between the boxes show relationships, such as 1-many, 1-1,
and many-to-many. Because each table corresponds to an entity, this is called a physical model.

Sometimes, the physical model of a database is very complicated. For instance, the TRANSACTION
table might actually be split into a separate table for each month of transactions, to facilitate backup
and restore processes.

TRANSACTION

TRANSACTION_ID

ACCOUNT_ID

VENDOR_ID

DATE

TIME

AMOUNT

AUTHORIZATION_CODE

…

ACCOUNT

ACCOUNT_ID

ACCOUNT_TYPE

INTEREST_RATE

CREDIT_LIMIT

MINIMIMUM_PAYMENT

CREDIT_LIMIT

AMOUNT_DUE

LAST_PAYMENT_AMOUNT

…

VENDOR

VENDOR_ID

VENDOR_NAME

VENDOR_TYPE

…

CUSTOMER

CUSTOMER_ID

HOUSEHOLD_ID

CUSTOMER_NAME

DATE_OF_BIRTH

GENDER

FICO_SCORE

…

HOUSEHOLD

HOUSEHOLD_ID

NUMBER_OF_CHILDREN

CENSUS_BLOCK

…

One account has multiple
transactions, each
transaction is associated
with exactly one account.

A single transaction has exactly one vendor,
but a vendor may have multiple transactions.

A customer may have one or more
accounts, but each account belongs
 to exactly one customer. Similarly,
one or more customers may be in household.
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Meta-
data

Central
Repository

External
Data

Networks using
standard protocols
like ODBC connect
users to the data.

Extract/transformation
and load tools move
data between systems.

Users are the raison d’etre of the
data warehouse. They act on the
information and knowledge gained
from the data.

Departmental data warehouse
and metadata support
applications used by end users.

The central data store is a
relational database with a
logical data model

Operational systems
are where the data
comes from. These are
usually mainframe or
midrange system.

Some data may be provided by external
vendors or business partners.

Analytic
Sandbox

Figure 17-3:  The multitiered approach to data warehousing includes a central repository, 
data marts, analytic sandboxes, end-user tools, and tools that connect all these pieces 
together.
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Parallel computers build on the basic Von Neumann uniprocessor architecture. 
SMP and MPP systems are scalable because more processing units, disk drives, and 
memory can be added to the system.

Uniprocessor

A simple computer follows the
architecture laid out by Von
Neumann. A processing unit
communicates to memory and
disk over a local bus. (Memory
stores both data and the
executable program.) The 
speed of the processor, bus,
and memory limits performance
and scalability.

SMP

The symmetric multiprocessor
(SMP) has a shared-everything
architecture. It expands the
capabilities of the bus to
support multiple processors,
more memory, and a larger disk.
The capacity of the bus limits
performance and scalability.
SMP architecture usually max
out with fewer than 20
processing units.

MPP

The massively parallel
processor (MMP) has a shared-
nothing architecture. It
introduces a high-speed
network (also called a switch
that connects independent
processor/memory/disk
components. MPP
architectures are very scalable
but fewer software packages can
take advantage of all the hardware.

P

M

M M

M

P

P
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P
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P
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The source of the data is
usually legacy mainframe

systems used for operations,
but it could be a data

warehouse.

Using processes, often too
cumbersome to

understand and too old to
change, operational data is
extracted and summarized.

Paper-based reports from
mainframe systems are

part of the business
process. They are usually
too late and too inflexible

for decision support.

OLAP tools, based on multi-
dimensional cubes, give users

flexible and fast access to
data, both summarized and

detail.

Off-the-shelf query tools
provide users some access to
the data and the ability to form

their own queries.

Figure 17-4:  Reporting requirements on operational systems are typically handled the same 
way they have been for decades. Is this the best way?
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shop = Pinewood
product = 4

date = ‘7 Mar 2004’
count =5

value = $215
discount = $32

cost = $75

Dimension columns

Aggregate columns

Date Prod
uc

t

Sh
op

Figure 17-5:  The cube used for OLAP is divided into subcubes. Each subcube contains the 
key for that subcube and summary information for the data falls into that subcube.
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Figure 17-6:  Dates have multiple hierarchies.
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Marketing
View

Days

time

Different users have different views of
the data, but they often share dimensions.

The hierarchy for the time dimension
needs to cover days, weeks, months,
and quarters.

The hierarchy for region starts at the
shop level and then includes
metropolitan areas and states.

The hierarchy for product includes
the department.

The hierarchy for the customer might
include households.

Shop
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Weeks

Re
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Figure 17-7:  Different views of the data often share common dimensions. Finding the 
common dimensions and their base units is critical to making data warehousing work well 
across an organization.
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Figure 17-8:  A star schema looks more like this. Dimension tables are conceptually nested, 
with more than one dimension table for a given dimension.
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The primary key
uniquely identifies
each row, often
corresponding to
customer ID.

A foreign key gives
access to data in
another table, such
as ZIP code
demographics.

The target columns
are what you are
looking for.
Sometimes, the
information is in
multiple columns,
such as a churn flag
and churn date.

Some columns are
ignored because the
values are not predictive,
contain future information,
or for other reasons.

Figure 18-1:  The fields of a customer signature have various roles.
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Copying

Pivoting

Aggregation

Table lookup

Summarization
of values from data

Derivation of 
new variables

Figure 18-2:  Data from most sources must be transformed in various ways before it 
can be incorporated into the signature.
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M01M02M03M04M05M06M07M08M09M10M11M12M13

Customer ID Date Amount

$100.10 $943.06 $105.20 $129.12

271828 $21.40

$129.12314159

2010-08-10

271828 $21.402010-07-10

271828 $21.402010-06-10

271828 $21.402010-05-10

2010-08-10

$105.20314159 2010-07-10

$943.06314159 2010-06-10

$100.10314159 2010-05-10

Figure 18-3:  Vertical data must be pivoted to insert it into the customer signature
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Table 18-1: Customer Occupation and Income

OCCUPATION AGE INCOME

Database Administrator 50 $92,000

Flight Attendant 32 $42,240

High School Teacher 45 $64,500

Database Administrator 47  — 

Letter Carrier 41 $36,500

Bus Driver 58 $24,000

College Professor 41 $73,300

Barista 22  — 

Yoga Instructor 28 $15,500
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Table 19-1: An Enumeration of the States

STATE CODE

Alabama      1

Alaska     2

Arizona     3

Arkansas     4

California     5

Colorado     6

Connecticut     7

Delaware     8

Florida     9

Georgia   10

Hawaii    11

Idaho    12
…
…
…

…
…
…
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Figure 19-1:  Most customers have made a purchase within the last two years.
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Figure 19-2:  Quantiles are generally more useful than equal-width bins.
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Figure 19-3:  A decision tree with a single input variable provides supervised binning.
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Figure 19-4:  Type II diabetes is strongly correlated with body mass index.
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     H � BB � HBP
OBP � 

AB � BB � HBP � SF
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Twc � 35.74 � 0.6215Ta � 35.75V 0.16 � 0.4275TaV 0.16
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Figure 19-5:  As median home value increases, so does median rent.
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Figure 19-6:  Although there are a few towns where no one pays rent, in most towns, 
many households do pay rent.
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Figure 19-7:  Most of the variability in the rent-to-home price ratio is in towns with lower 
median home prices.
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Figure 19-8:  No relationship appears to exist between the percentage of owners and the 
median rent–to–median home value ratio.
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Figure 19-9:  Probability of voting Republican as a function of income for several states.
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Figure 19-10:  Quarterly sales for a small retailer show seasonal fluctuations but an 
overall increase over time.
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Quarterly Sales
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Figure 19-11:  The growth trend can be captured by the slope of a best-fit line.
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Figure 19-12:  After removing trend, capturing the effect of seasonality is easier.
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Figure 19-13:  Product penetration by ZIP code. 
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Figure 20-1:  Because of sparse data, these four clusters are uninteresting, segmenting 
the customers into groups based on how much they have purchased. The one customer 
in Cluster 3 has made many purchases. The many customers in Cluster 1 have probably 
made only one purchase each.
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Figure 20-2:  This data looks sparse in two dimensions, because of the many areas where 
there is no data. However, it is not sparse along just the X-axis.
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In the variable space, each observation is shown as a point (as shown on the top), 
with the axes representing variables. In the observation space, each point represents a 
variable, with the axes representing observations.
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Figure 20-3:  The relationship between the proportion of a ZIP code that is urban and 
the proportion of homes heated primarily by wood shows a partial linear relationship. The 
relationship between the two factors is quite different depending on whether or not the 
population is entirely rural. 
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Table 20-1: Exponential Growth of the Number of Combinations Needed for Exhaustive 
Selection 

NUMBER OF VARIABLES NUMBER OF COMBINATIONS

2 3

3 7

4 15

5 31

10 1,023

20 1,048,575

30 1,073,741,823

40 1,099,511,627,775

50 1,125,899,906,842,623
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y = 0.1121x − 0.0021
R² = 0.5042
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Figure 20-4:  The scatter plots in this figure are for four different input variables. The best 
input variable is the one on the upper left, because it has the largest R2 value.
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Data Partition Neural NetworkZIPCENSUS

Decision Tree

Figure 20-5:  This picture shows an SAS Enterprise Miner diagram that uses a decision 
tree node to select variables for a neural network node. The data “flows” across the top 
part of the diagram from the source, through the partitioning node, to the neural network. 
The data also goes to the decision tree node, which builds the tree and passes the 
variables used to the neural network.
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Table 20-2: A Comparison of the Variables Chosen by a Decision Tree and Forward Regression

VARIABLES CHOSEN BY REGRESSION VARIABLES CHOSEN BY DECISION TREE

VARIABLE IMPORTANCE VARIABLE IMPORTANCE

hhuoplumbinglacking 1.000 longitude 1.000

pruralnonfarm 0.968 hhuoplumbinglacking 0.992

longitude 0.612 prural 0.641

latitude 0.350 hhuoplumbingcomplete 0.352

hhperson2fnonfamily 0.310 hhumedianyear 0.228

faminc010_015 0.288 latitude 0.196
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Figure 20-6:  The best-fit line minimizes the sum of the squares of the vertical distances 
from the data points to the line.

c20.indd 754c20.indd   754 3/16/2011 2:06:34 PM3/16/2011   2:06:34 PM

340



$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Am
ou

nt
 P

ai
d

Tenure

Figure 20-7:  The first principal component is the line that minimizes the sum of the 
squares of the distances from each point to the line.
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Figure 20-8:  A scree plot shows the amount of information included in the first n principal 
components.
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Figure 20-9:  In this example with 27 flags, the scree plot for the principal components is 
not steep, indicating that the principal components do not efficiently capture the information 
in the original data.

c20.indd 759c20.indd   759 3/16/2011 2:06:34 PM3/16/2011   2:06:34 PM

343



Table 20-3: Coefficients for the First Principal Component for the Education Variables, 
Weighted by ZIP Code and Weighted by Population 

VARIABLE DESCRIPTION
COEFFICIENT 
UNWEIGHTED

COEFFICIENT 
WEIGHTED

Popedunone No Education –0.1609 –0.2313

Popedunohs No High School –0.3526 –0.3601

Popedusomehs Some High School –0.3415 –0.3970

Popeduhsgrad High School Graduate –0.3402 –0.3202

popedusomecol Some College 0.2016 0.1163

Popeduassoc 2-Year College Degree 0.2010 0.1770

Popedubach 4-Year College Degree 0.4701 0.4444

Popedumast Master’s Degree 0.4206 0.4221

popeduprofdoct Doctorate or 
Professional Degree

0.3720 0.3690
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Figure 20-11:  These scatter plots show the data along the first four principal components, 
plotted pairwise. The two charts on the upper left, for instance, are the scatter plot using 
the first two principal components.
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Figure 20-12:  This tree shows an example of variable clustering for some of the census 
variables. The variables at the top, for instance, all indicate highly educated wealthy 
regions (or, equivalently, poorly educated, impoverished ones).
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Figure 20-13:  This cluster plot shows an alternative way of looking at the variable clusters 
as nodes in a graph that show relationships among the variables.

HHUORENTER
PRURALNONFARM

FAMMEDINCOME

HHMEDINCOME

POPEDUHS
HHUMEDIANCASHRENT

POPEDUBACH

POPEDUMAST

GRADPOPEDUPROFDOCT

HHNOSSINCOME
HHSSINCOME

POPEDUASSOC

POPEDUNOHS

POPEDUNONE

POPEDUSOMECOL

POPEDUSOMEHS

CLUS3

CLUS5

CLUS2

CLUS4 CLUS9

CLUS1

CLUS6

CLUS7

HHUOPLUMBINGLACKING
CLUS8HHNOPUBASSIST

HHOTHER

HHUMEDIANYEAR

HHUOPLUMBINGCOMPLETE

PINURBANAREA

PRURAL

PRURALFARM
PURBAN

PINURBANCLUSTER

HHUOWNER

FAM
HH

HHUOCCUPIED

HOUSINGUNITS
POP

POPEDU

POPULATION

348



Table 20-4: Example of Data for Six ZIP Codes

ZIPCODE LANDAREAMILES HHMEDINCOME HHNOPUBASSIST NOHHDIPLOMA COLDEGREE 

10011 0.6  $61,986 98.5% 3.5% 68.6%

33158 3.1  $118,410 99.3% 2.6% 60.6%

33193 13.7  $39,990 96.5% 10.5% 19.7%

55343 8.3  $44,253 97.0% 3.3% 38.1%

94518 5.6  $64,429 95.7% 4.7% 32.3%

98053 32.4  $96,028 99.4% 2.0% 57.8%
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Table 20-5: Correlation Matrix for Five Variables Used for Variable Clustering Example

LANDAREAMILES HHMEDINCOME HHNOPUBASSIST NOHHDIPLOMA COLDEGREE

landarea-
miles

1.000 –0.129 –0.012 0.019 –0.075

hhmedin-
come

–0.129 1.000 0.327 –0.433 0.679

hhnopub-
assist

–0.012 0.327 1.000 –0.129 0.163

nohhdi-
ploma

0.019 –0.433 –0.129 1.000 –0.492

coldegree –0.075 0.679 0.163 –0.492 1.000
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Figure 20-14:  Tree structure for variables clustered using correlation and 
principal components.
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Figure 21-1:  Google trends provides information about the popularity of search terms 
over time.
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Table 21-1: Counts of Unique Terms and Total Words for Translations of the Bible2

LANGUAGE UNIQUE TERMS TERM COUNT

English 12,335 789,744

French 20,428 812,947

Spanish 28,456 704,004

Russian 47,226 560,524

Arabic 55,300 440,435

2Bader B. and Chew P, 2010. “Algebraic Techniques for Multilingual Document Clustering.” In 
Text Mining Applications and Theory, page 23. (Michael W. Berry and Jacob Kogan, eds.). Wiley.
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Table 21-2: Boycott Stops with Respect to Stop Types

STOP TYPE TOTAL BOYCOTT PERCENT

Editorial Stop 4,893 4,378 89.47%

Vacation 34,678 1,055 3.04%

Other 8,811 349 3.96%

Missing 6,083 292 4.80%

Total 6,074

c21.indd 789c21.indd   789 3/16/2011 2:07:18 PM3/16/2011   2:07:18 PM

354



Table 21-3: Six Types of Codes Used to Classify News Stories

CATEGORY # CODES # DOCS # OCCURRENCES

Government (G/) 28 3,926 4,200

Industry (I/) 112 38,308 57,430

Market Sector (M/) 9 38,562 42,058

Product (P/) 21 2,242 2,523

Region (R/) 121 47,083 116,358

Subject (N/) 70 41,902 52,751
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Table 21-4: Classifi ed Neighbors of a Not-Yet-Classifi ed Story

NEIGHBOR DISTANCE WEIGHT CODES

1 0.076 0.924 R/FE,R/CA,R/CO

2 0.346 0.654 R/FE,R/JA,R/CA

3 0.369 0.631 R/FE,R/JA,R/MI

4 0.393 0.607 R/FE,R/JA,R/CA
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dclassification (A,B) = (1 – score(A,B)) / score(A,A)
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Table 21-5: Code Scores for the Not-Yet-Classified Story

CODE 1 2 3 4 SCORE

R/CA 0.924 0.654 0.000 0.607 2.185

R/CO 0.924 0.000 0.000 0.000 0.924

R/FE 0.924 0.654 0.631 0.607 2.816

R/JA 0.000 0.654 0.631 0.607 1.892

R/MI 0.000 0.654 0.000 0.000 0.624
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Figure 21-2:  A comparison of results by 
human editors and by MBR on assigning 
codes to news stories.

c21.indd 794c21.indd   794 3/16/2011 2:07:19 PM3/16/2011   2:07:19 PM

359



Document n
A term document matrix contains
information about the important
words in each document. A term
document matrix contains
information about the important
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Figure 21-3:  A term-document matrix contains information about the important words in 
each document.
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Figure 21-4:  The first principal component maximizes the variance of the points on the 
projected line.
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Courtesy of Prof. Eric Jiang, University of San Diego
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Figure 21-6:  The naïve Bayesian classifier tends to work better as more terms are 
added, although the improvement plateaus around 750 terms.

c21.indd 804c21.indd   804 3/16/2011 2:07:20 PM3/16/2011   2:07:20 PM

363



Augmented clustering in LSI adds new centroids, which are members of the other 
class that are close to the original cluster centroids.

Step1: Data divided between two
classes

Step2: Find cluster centroids for each
class

Step3: Find members of other class
closest to centers

Step4: Make those points cluster
centers as well

AN ALTERNATIVE APPROACH FOR CLASSIFYING 
E-MAILS (continued )

Email Clusters
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Figure 21-7:  The implementation of the new call center interface, inspired by text mining 
efforts, reduced the average call duration by a noticeable amount.
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Figure 21-8:  The process for building document clusters involves many steps to 
transform the data into a structure usable for analysis.
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